Description Format Details Active bindings Methods Author(s)
Detects and substitutes missing values from data set.
R6::R6Class object.
Detects missing values in the transformed and normalized data set. This object is used by the shiny based gui and is not for use in individual R-scripts!
imputationParameter
Returns the instance variable outliersParameter. (tibble::tibble)
imputationSites
Returns the instance variable imputationSites. (tibble::tibble)
one_hot_df
Returns the positions of missings in one_hot encoding (tibble::tibble)
amv
Returns the instance variable amv. (numeric)
new()
Creates and returns a new pgu.missings
object.
pgu.missings$new(data_df = "tbl_df")
data_df
The data to be cleaned. (tibble::tibble)
A new pgu.missings
object.
(pguIMP::pgu.missings)
finalize()
Clears the heap and
indicates that instance of pgu.missings
is removed from heap.
pgu.missings$finalize()
print()
Prints instance variables of a pgu.missings
object.
pgu.missings$print()
string
resetImputationParameter()
Resets instance variables and identifies missings in the normalized data set.
pgu.missings$resetImputationParameter(data_df = "tbl_df")
data_df
Dataframe to be analyzed. (tibble::tibble)
featureIdx()
Returns the position of an attribute within a data frame.
pgu.missings$featureIdx(feature = "character")
feature
The attribute's name. (character)
The postion of the attribute. (numeric)
filterFeatures()
Selects features cotaining missing values from a dataset.
pgu.missings$filterFeatures(data_df = "tbl_df")
data_df
Dataframe to be analyzed. (tibble::tibble)
The filtered data frame. (tibble::tibble)
gatherMeasurements()
Calculates the number of values of a vector.
pgu.missings$gatherMeasurements(value = "numeric")
value
A vector comprising numeric data. (numeric)
The lenght of the vector. (numeric)
gatherMissings()
Calculates the number of missing values of a vector.
pgu.missings$gatherMissings(value = "numeric")
value
A vector comprising numeric data. (numeric)
The number of missing in the vector. (numeric)
gatherExistings()
Calculates the number of existing values of a vector.
pgu.missings$gatherExistings(value = "numeric")
value
A vector comprising numeric data. (numeric)
The number of existing values in the vector. (numeric)
gatherFractionOfMissings()
Calculates the fraction of missing values of a vector.
pgu.missings$gatherFractionOfMissings(value = "numeric")
value
A vector comprising numeric data. (numeric)
The fraction of missing values in the vector. (numeric)
gatherImputationStatistics()
Gathers statistical information about missing values
that are provided by the classes public gather
functions.
The information is stored within the classes instance variable imputationParameter
pgu.missings$gatherImputationStatistics(data_df = "tbl_df")
data_df
The data frame to be analyzed. (tibble::tibble)
one_hot()
Gathers statistical information about missing values in one hot format. The result is stored in the instance variable one_hot_df.
pgu.missings$one_hot(data_df = "tbl_df")
data_df
The data frame to be analyzed. (tibble::tibble)
detectImputationSites()
Detects missing values within the data frame and
writes the to the instance variable imputationsites
.
pgu.missings$detectImputationSites(data_df = "tbl_df")
data_df
The data frame to be analyzed. (tibble::tibble)
imputationSiteDistribution()
Numeric representation of the distribution of missing values within the data frame.
pgu.missings$imputationSiteDistribution(data_df = "tbl_df")
data_df
The data frame to be analyzed. (tibble::tibble)
A data frame (tibble::tibble) #' @description #' Merges the numeric attributes of the pguIMP data with its metadata. #' @param data_df #' The data frame to be analyzed. #' (tibble::tibble) #' @param metadata_df #' The corresponding metadata. #' (tibble::tibble) #' @return #' A data frame #' (tibble::tibble) mergeImputationSiteData = function(data_df = "tbl_df", metadata_df = "tbl_df") dfMerge <- data_df if(nrow(data_df) == nrow(metadata_df)) dfMerge <- dplyr::bind_cols(metadata_df, data_df) #if dfMerge %>% dplyr::filter_all(dplyr::any_vars(is.na(.))) %>% return() , #function
imputationSiteHeatMap()
Displays the distribution of missing values in form of a heatmap.
pgu.missings$imputationSiteHeatMap()
A heatmap plot. (ggplot2::ggplot)
clone()
The objects of this class are cloneable with this method.
pgu.missings$clone(deep = FALSE)
deep
Whether to make a deep clone.
Sebastian Malkusch, malkusch@med.uni-frankfurt.de
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.