Description Format Details Active bindings Methods Author(s)
Finds the transformation models that result in distributions that come closest to a normal distribution.
R6::R6Class object.
Analysis is performed individually on each attribute. This object is used by the shiny based gui and is not for use in individual R-scripts!
featuresReturns the instance variable features. (character)
trafoAlphabetReturns the instance variable trafoAlphabet. (character)
setTrafoAlphabetSets the instance variable trafoAlphabet to data. (character)
mirrorReturns the instance variable mirror (logical)
setMirrorSets the instance variable mirror to data (logical)
optParameterReturns the instance variable optParameter (tibble::tibble)
optTypesReturns the instance variable optTypes (tibble::tibble)
new()Creates and returns a new pgu.optimizer object.
pgu.optimizer$new(data = "tbl_df")
dataThe data to be analyzed. (tibble::tibble)
A new pgu.optimizer object.
(pguIMP::pgu.optimizer)
finalize()Clears the heap and
indicates that instance of pgu.optimizer is removed from heap.
pgu.optimizer$finalize()
print()Prints instance variables of a pgu.optimizer object.
pgu.optimizer$print()
string
resetFeatures()Extract the attribute names from the given data frame and stores them in the class' instance variable features,
pgu.optimizer$resetFeatures(data = "tbl_df")
dataThe data to be analyzed. (tibble::tibble)
resetOptParameter()Initializes the instance variable optParameter.
pgu.optimizer$resetOptParameter()
resetOptTypes()Initializes the instance variable optTypes.
pgu.optimizer$resetOptTypes()
resetOptimizer()Initializes the optimizer instance variables. Here, initialization defines a consecutive sequence of the class' functions: resetFeatures, setTrafoAlphabet, setMirror, resetOptParameter and resetOptTypes.
pgu.optimizer$resetOptimizer(data = "tbl_df")
dataThe data to be analyzed. (tibble::tibble)
featureIdx()Determines the numerical index of the column of an attribute based on the attribute name.
pgu.optimizer$featureIdx(feature = "character")
featureThe attribute's name. (character)
The attributes column index. (numeric)
modelParameterIsBigger()Compares a model parameter to a reference parameter and tests, if the model parameter is bigger.
pgu.optimizer$modelParameterIsBigger( modelParameter = "numeric", referenceParameter = "numeric" )
modelParameterThe model parameter (numeric)
referenceParameterThe reference parameter (numeric)
Test Result (logical)
modelParameterIsSmaller()Compares a model parameter to a reference parameter and tests, if the model parameter is smaller.
pgu.optimizer$modelParameterIsSmaller( modelParameter = "numeric", referenceParameter = "numeric" )
modelParameterThe model parameter (numeric)
referenceParameterThe reference parameter (numeric)
Test Result (logical)
updateTrafoType()Takes an instance of the pgu.transfromator class and sets the transformation type to a user defined value.
pgu.optimizer$updateTrafoType( transformator = "pgu.transformator", type = "character" )
transformatorAn instance of the pgu.transformator class (pguIMP::pgu.transformator)
typeA transfromation type (character)
An updated instance of the pgu.transformator class (pguIMP::pgu.transformator)
updateMirrorLogic()Takes an instance of the pgu.transfromator class and sets the mirrorLogic parameter to a user defined value.
pgu.optimizer$updateMirrorLogic( transformator = "pgu.transformator", logic = "logical" )
transformatorAn instance of the pgu.transformator class (pguIMP::pgu.transformator)
logicThe mirrorLogic parameter (logic)
An updated instance of the pgu.transformator class (pguIMP::pgu.transformator)
updateOptParameter()Takes an instance of the pgu.model class and analyzes it. Keeps track of the optimal model parameters during optimization and stores them in the instance variables optTypes and optParameter.
pgu.optimizer$updateOptParameter( model = "pgu.model", type = "character", logic = "character" )
modelAn instance of the pgu.model class (pguIMP::pgu.model)
typeA transfromation type (character)
logicThe mirrorLogic parameter (logic)
optimize()Permutates all possible variations of data transfromations and iterates through them. Analysis the optimal transformation parameters for each attribute in the data frame and stores them in the instance variables optParameter, optTypes.
pgu.optimizer$optimize(data = "tbl_df", progress = "Progress")
dataThe data frame to be analyzed. (tibble::tibble)
progressIf shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)
trafoAlpahbetTblDf()Returns information on the optimization progress
pgu.optimizer$trafoAlpahbetTblDf()
The data frame comprizing analysis information. (tibble::tibble)
clone()The objects of this class are cloneable with this method.
pgu.optimizer$clone(deep = FALSE)
deepWhether to make a deep clone.
Sebastian Malkusch, malkusch@med.uni-frankfurt.de
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.