Description Format Details Active bindings Methods Author(s)
Finds the transformation models that result in distributions that come closest to a normal distribution.
R6::R6Class object.
Analysis is performed individually on each attribute. This object is used by the shiny based gui and is not for use in individual R-scripts!
features
Returns the instance variable features. (character)
trafoAlphabet
Returns the instance variable trafoAlphabet. (character)
setTrafoAlphabet
Sets the instance variable trafoAlphabet to data. (character)
mirror
Returns the instance variable mirror (logical)
setMirror
Sets the instance variable mirror to data (logical)
optParameter
Returns the instance variable optParameter (tibble::tibble)
optTypes
Returns the instance variable optTypes (tibble::tibble)
new()
Creates and returns a new pgu.optimizer
object.
pgu.optimizer$new(data = "tbl_df")
data
The data to be analyzed. (tibble::tibble)
A new pgu.optimizer
object.
(pguIMP::pgu.optimizer)
finalize()
Clears the heap and
indicates that instance of pgu.optimizer
is removed from heap.
pgu.optimizer$finalize()
print()
Prints instance variables of a pgu.optimizer
object.
pgu.optimizer$print()
string
resetFeatures()
Extract the attribute names from the given data frame and stores them in the class' instance variable features,
pgu.optimizer$resetFeatures(data = "tbl_df")
data
The data to be analyzed. (tibble::tibble)
resetOptParameter()
Initializes the instance variable optParameter.
pgu.optimizer$resetOptParameter()
resetOptTypes()
Initializes the instance variable optTypes.
pgu.optimizer$resetOptTypes()
resetOptimizer()
Initializes the optimizer instance variables. Here, initialization defines a consecutive sequence of the class' functions: resetFeatures, setTrafoAlphabet, setMirror, resetOptParameter and resetOptTypes.
pgu.optimizer$resetOptimizer(data = "tbl_df")
data
The data to be analyzed. (tibble::tibble)
featureIdx()
Determines the numerical index of the column of an attribute based on the attribute name.
pgu.optimizer$featureIdx(feature = "character")
feature
The attribute's name. (character)
The attributes column index. (numeric)
modelParameterIsBigger()
Compares a model parameter to a reference parameter and tests, if the model parameter is bigger.
pgu.optimizer$modelParameterIsBigger( modelParameter = "numeric", referenceParameter = "numeric" )
modelParameter
The model parameter (numeric)
referenceParameter
The reference parameter (numeric)
Test Result (logical)
modelParameterIsSmaller()
Compares a model parameter to a reference parameter and tests, if the model parameter is smaller.
pgu.optimizer$modelParameterIsSmaller( modelParameter = "numeric", referenceParameter = "numeric" )
modelParameter
The model parameter (numeric)
referenceParameter
The reference parameter (numeric)
Test Result (logical)
updateTrafoType()
Takes an instance of the pgu.transfromator class and sets the transformation type to a user defined value.
pgu.optimizer$updateTrafoType( transformator = "pgu.transformator", type = "character" )
transformator
An instance of the pgu.transformator class (pguIMP::pgu.transformator)
type
A transfromation type (character)
An updated instance of the pgu.transformator class (pguIMP::pgu.transformator)
updateMirrorLogic()
Takes an instance of the pgu.transfromator class and sets the mirrorLogic parameter to a user defined value.
pgu.optimizer$updateMirrorLogic( transformator = "pgu.transformator", logic = "logical" )
transformator
An instance of the pgu.transformator class (pguIMP::pgu.transformator)
logic
The mirrorLogic parameter (logic)
An updated instance of the pgu.transformator class (pguIMP::pgu.transformator)
updateOptParameter()
Takes an instance of the pgu.model class and analyzes it. Keeps track of the optimal model parameters during optimization and stores them in the instance variables optTypes and optParameter.
pgu.optimizer$updateOptParameter( model = "pgu.model", type = "character", logic = "character" )
model
An instance of the pgu.model class (pguIMP::pgu.model)
type
A transfromation type (character)
logic
The mirrorLogic parameter (logic)
optimize()
Permutates all possible variations of data transfromations and iterates through them. Analysis the optimal transformation parameters for each attribute in the data frame and stores them in the instance variables optParameter, optTypes.
pgu.optimizer$optimize(data = "tbl_df", progress = "Progress")
data
The data frame to be analyzed. (tibble::tibble)
progress
If shiny is loaded, the analysis' progress is stored within this instance of the shiny Progress class. (shiny::Progress)
trafoAlpahbetTblDf()
Returns information on the optimization progress
pgu.optimizer$trafoAlpahbetTblDf()
The data frame comprizing analysis information. (tibble::tibble)
clone()
The objects of this class are cloneable with this method.
pgu.optimizer$clone(deep = FALSE)
deep
Whether to make a deep clone.
Sebastian Malkusch, malkusch@med.uni-frankfurt.de
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.