Description Format Details Active bindings Methods Author(s)
Compares the distribution of a single attribute's values to normal distribution by using several statistic tests.
R6::R6Class object.
The distribution of a single value is tested for normality by Shapiro-Wilk test, Kolmogorov-Smirnov test, Anderson-Darling test. The expectation value and standard deviation of a normal distribution representing the data are determined by maximizing the log Likelihood with respect to the expectation value and standard deviation. This object is used by the shiny based gui and is not for use in individual R-scripts!
featureName
Returns the instance variable featureName. (character)
rawData
Returns the instance variable rawData. (tibble::tibble)
setRawData
Sets the instance variable rawData. (tibble::tibble)
histogram
Returns the instance variable histogram. (tibble::tibble)
expMu
Returns the instance variable expMu. (numeric)
expSigma
Returns the instance variable expSigma. (numeric)
dataPoints
Returns the instance variable dataPoints. (numeric)
logLikelihood
Returns the instance variable logLikelihood. (numeric)
degOfFreedom
Returns the instance variable degOfFreedom. (numeric)
n
Returns the instance variable n. (integer)
bic
Returns the instance variable bic. (numeric)
aic
Returns the instance variable aic. (numeric)
aicc
Returns the instance variable aicc. (numeric)
rmse
Returns the instance variable rmse. (numeric)
fitSuccess
Returns the instance variable fitSuccess. (logical)
testNames
Returns the instance variable testNames. (character)
testParameterNames
Returns the instance variable testParameterNames. (character)
alpha
Returns the instance variable alpha. (numeric)
w.shapiro
Returns the instance variable w.shapiro. (numeric)
p.shapiro
Returns the instance variable p.shapiro. (numeric)
d.kolmogorow
Returns the instance variable d.kolmogorow. (numeric)
p.kolmogorow
Returns the instance variable p.kolmogorow. (numeric)
a.anderson
Returns the instance variable a.anderson. (numeric)
p.anderson
Returns the instance variable p.anderson. (numeric)
new()
Creates and returns a new pgu.normDist
object.
pgu.normDist$new(data = "tbl_df")
data
The data to be analyzed. (tibble::tibble)
A new pgu.normDist
object.
(pguIMP::pgu.normDist)
finalize()
Clears the heap and
indicates that instance of pgu.normDist
is removed from heap.
pgu.normDist$finalize()
print()
Prints instance variables of a pgu.normDist
object.
pgu.normDist$print()
string
resetNormDist()
Resets instance variables
pgu.normDist$resetNormDist(data = "tbl_df")
data
Dataframe to be analyzed. (tibble::tibble)
resetFail()
Resets instance variables in case of a failed analysis.
pgu.normDist$resetFail()
optimize()
Optimizes the logLikelihood between the data and a normal distribution with respect to the expectation value and standard deviation. The quality of the best model ist calculated subsequently.
pgu.normDist$optimize()
createHistogram()
Creates a histogram from the instance variable rawData
.
The histogram is stored in the instance variable histogram
.
pgu.normDist$createHistogram()
normalQQData()
Performes a qq-analysis of the instance variable rawData
The qq-analysis is stored in the attributes sample_quantile
and theoretical_quantile
of the instance variable rawData
.
pgu.normDist$normalQQData()
test.shapiro()
Performes Shapiro-Wilk's test for normality on the
instance variable rawData
.
The test result is stored in the instance variable
w.shapiro
.
The p-value of the test is stored in the instance variable
p.shapiro
pgu.normDist$test.shapiro()
test.kolmogorow()
Performes Kolmogorow-Smirnow's test for normality on the
instance variable rawData
.
The test result is stored in the instance variable
d.kolmogorow
.
The p-value of the test is stored in the instance variable
p.kolmogorow
pgu.normDist$test.kolmogorow()
test.anderson()
Performes Anderson-Darling's test for normality on the
instance variable rawData
.
The test result is stored in the instance variable
a.anderson
.
The p-value of the test is stored in the instance variable
p.anderson
pgu.normDist$test.anderson()
fitResult()
Returns the result of the classes optimize function in form of a formated string.
pgu.normDist$fitResult()
String of the results of the fitting routine (character)
testResult()
Returns the result of the classes test functions in form of a formated string.
pgu.normDist$testResult(testName = "Shapiro-Wilk")
testName
Defines the test which result shall be returned.
Can be of type:Shapiro-Wilk
, Kolmogorow-Smirnow
or Anderson-Darling
.
(character)
String of the results of the testing routine (character)
testResultCompendium()
Returns the result of the classes test functions
Shapiro-Wilk
, Kolmogorow-Smirnow
and
Anderson-Darling
in form of a formated string.
(character)
pgu.normDist$testResultCompendium()
String of the results of the testing routine (character)
plotHistogram()
Displays the instance variable histogram
in form of a bar plot and overlays the corresponding normal distribution.
pgu.normDist$plotHistogram()
A bar plot. (ggplot2::ggplot)
plotResiduals()
Displays the residuals between the instance variable
histogram
and the corresponding normal distribution.
pgu.normDist$plotResiduals()
A scatter plot. (ggplot2::ggplot)
plotResidualDist()
Displays the distribution of the residuals between the distribution of the instance variable
histogram
in form of a histogram.
pgu.normDist$plotResidualDist()
A bar plot. (ggplot2::ggplot)
plotRawResidualDist()
Displays the distribution of the residuals between the distribution of the instance variable
rawData
in form of a histogram.
pgu.normDist$plotRawResidualDist()
A bar plot. (ggplot2::ggplot)
plotRawDataDist()
Displays the distribution of the instance variable
rawData
in form of a histogram.
pgu.normDist$plotRawDataDist()
A bar plot. (ggplot2::ggplot)
normalQQPlot()
Displays a qqplot of the instance variable
rawData
.
pgu.normDist$normalQQPlot()
A qq-plot. (ggplot2::ggplot)
fit()
Runs the optimization process and performs all implemented quality controls. Additionally performs hypothesis tests for nromality.
pgu.normDist$fit()
clone()
The objects of this class are cloneable with this method.
pgu.normDist$clone(deep = FALSE)
deep
Whether to make a deep clone.
Sebastian Malkusch, malkusch@med.uni-frankfurt.de
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.