Description Format Details Active bindings Methods Author(s)
Transforms the data of pguIMP.
R6::R6Class object.
Performs a data transformation in order to achieve a normally distributed version of the dataframe. This object is used by the shiny based gui and is not for use in individual R-scripts!
trafoAlphabetReturns the instance variable trafoAlphabte.
trafoParameterReturns the instance variable trafoParameter.
new()Creates and returns a new pgu.transformator object.
pgu.transformator$new(data_df = "tbl_df")
data_dfThe data to be analyzed. (tibble::tibble)
A new pgu.transformator object.
(pguIMP::pgu.transformator)
finalize()Clears the heap and
indicates that instance of pgu.transformator is removed from heap.
pgu.transformator$finalize()
print()Prints instance variables of a pgu.transformator object.
pgu.transformator$print()
string
resetTrafoParameter()Resets instance variable trafoParameter
pgu.transformator$resetTrafoParameter(data = "tbl_df")
dataDataframe to be analyzed. (tibble::tibble)
trafoType()Returns entry of trafoType
for user defined attribute.
pgu.transformator$trafoType(feature = "character")
featureAttribute's name. (character)
Value of entry. (character)
setTrafoType()Sets entry of trafoType
for user defined attribute.
pgu.transformator$setTrafoType(feature = "character", type = "character")
featureAttribute's name. (character)
typeTrafo type parameter. Valid choices are: "none", "exponential", "log2", "logNorm", "log10", "arcsine", "tukeyLOP", "boxCox". (character)
addConstant()Returns entry of addConst
for user defined attribute.
pgu.transformator$addConstant(feature = "character")
featureAttribute's name. (character)
Value of entry. (numeric)
mirrorLogic()Returns entry of mirrorLogic
for user defined attribute.
pgu.transformator$mirrorLogic(feature = "character")
featureAttribute's name. (character)
Value of entry. (logical)
setMirrorLogic()Sets entry of mirrorLogic
for user defined attribute.
pgu.transformator$setMirrorLogic(feature = "character", logic = "logical")
featureAttribute's name. (character)
logicSpecifies whether the data should be mirrored at the coordinate origin. (logical)
lambdaLOP()Returns entry of lambda_lop
for user defined attribute.
Lambda is a specific optimization parameter
that is derived from the Tukey-LOP
transfromation procedure.
pgu.transformator$lambdaLOP(feature = "character")
featureAttribute's name. (character)
Value of entry. (numeric)
setLambdaLOP()Sets entry of lambda_lop
for user defined attribute.
pgu.transformator$setLambdaLOP(feature = "character", lambda = "numeric")
featureAttribute's name. (character)
lambdaSets the feature specific exponential value. (numeric)
lambdaBC()Returns entry of lambda_bc
for user defined attribute.
Lambda is a specific optimization parameter
that is derived from the Box-Cox
transfromation procedure.
pgu.transformator$lambdaBC(feature = "character")
featureAttribute's name. (character)
Value of entry. (numeric)
lambdaAS()Returns entry of lambda_as
for user defined attribute.
Lambda is a specific optimization parameter
that is derived from the arcsine
transfromation procedure.
pgu.transformator$lambdaAS(feature = "character")
featureAttribute's name. (character)
Value of entry. (numeric)
featureIdx()Returns the index of a pgu.normDist object wihtin the instance variable trafoParameter.
pgu.transformator$featureIdx(feature = "character")
featureAttribute's name. (character)
Index of attribute entry in dataframe (numeric)
addConstGenerator()Calculates and returns the addConst. A constant that prevents the occurrence of negative values as well as zero, if added to an attribute.
pgu.transformator$addConstGenerator(value = "numeric")
valueThe smallest of the attribute's values. (numeric)
The addConst for the attribute (numeric)
mirrorNumeric()Mirrors the assigned values at the coordinate origin.
pgu.transformator$mirrorNumeric(value = "numeric")
valueValue or vector of values. (numeric)
Value or vector of values. (numeric)
mirrorData()Calls the class' mirrorNumeric function on all numeric attributes of a data frame.
pgu.transformator$mirrorData(data = "tbl_df")
dataA data frame. (tibble:tibble)
A data frame (tibble::tibble)
calculateAddConst()Calculates the addConst value for each attribute of the assigned data frame, by calling the class' addConstGenerator function. The results are stored in addConst attribute of the trafoParameter instance variable.
pgu.transformator$calculateAddConst(data = "tbl_df")
dataA data frame. (tibble:tibble)
translateNumeric()Translates the assigned values by a constant.
pgu.transformator$translateNumeric(value = "numeric", const = "numeric")
valueA numeric or a vector of numerics to be translated. (numeric)
constA constant value. (numeric)
A numeric or a vector of numerics. (numeric)
translateData()Translates each attribute of the assigned data frame, by calling the class' translateNumeric function. The respective addConst values of the individual attributes of the data frame serve as const variables.
pgu.transformator$translateData(data = "tbl_df")
dataA data frame. (tibble:tibble)
A data frame. (tibble:tibble)
backTranslateNumeric()Back-translates the assigned values by a constant.
pgu.transformator$backTranslateNumeric(value = "numeric", const = "numeric")
valueA numeric or a vector of numerics to be back-translated. (numeric)
constA constant value. (numeric)
A numeric or a vector of numerics. (numeric)
backTranslateData()Back-translates each attribute of the assigned data frame, by calling the class' backTranslateNumeric function. The respective addConst values of the individual attributes of the data frame serve as const variables.
pgu.transformator$backTranslateData(data = "tbl_df")
dataA data frame. (tibble:tibble)
A data frame. (tibble:tibble)
lambdaEstimator()Estimates the lambda factor for the given values, that are assigned to a user defined attribute..
pgu.transformator$lambdaEstimator(value = "numeric", feature = "character")
valueA numeric or a vector of numerics to be analyzed. (numeric)
featureThe attribute which the given values are assigned to. (character)
The specific lambda factor. (numeric)
estimateLambda_temp()Estimates the lambda factor for each attribute of the assigned data frame, by calling the class' lambdaEstimator function. The respective lambda values of the individual attributes of the data frame are stored in the lambda attribute of the instance variable trafoParameter.
pgu.transformator$estimateLambda_temp(data = "tbl_df")
dataA data frame. (tibble:tibble)
estimateLambda()Estimates the arcsine transformation lambda factor for each attribute of the assigned data frame. The respective lambda values of the individual attributes of the data frame are stored in the lambda attribute of the instance variable trafoParameter.
pgu.transformator$estimateLambda(data = "tbl_df")
dataA data frame. (tibble:tibble)
normalizeArcSine()Estimates the lambda factor for an arcsine transformation for the given values,
pgu.transformator$normalizeArcSine(value = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
The specific lambda factor. (numeric)
optimizeTukeyLadderOfPowers()Estimates the lambda factor for a tukeyLOP transformation for the given values,
pgu.transformator$optimizeTukeyLadderOfPowers(value = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
The specific lambda factor. (numeric)
optimizeBoxCox()Estimates the lambda factor for a boxcox transformation for the given values,
pgu.transformator$optimizeBoxCox(value = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
The specific lambda factor. (numeric)
transformNumeric()Transforms the given numeric values, that are assigned to a user defined attribute.
pgu.transformator$transformNumeric(value = "numeric", feature = "character")
valueA numeric or a vector of numerics to be tranformed. (numeric)
featureThe attribute which the given values are assigned to. (character)
A transfromed version of the given numeric or vector of numerics. (numeric)
transformData()Transforms each attribute of the assigned data frame, by calling the class' tranformNumeric function. The respective lambda values of the individual attributes of the data frame are read from the lambda attribute of the instance variable trafoParameter.
pgu.transformator$transformData(data = "tbl_df")
dataA data frame. (tibble:tibble)
transformLogModulus()Performes a log transformation for the given values, based on a user defined base value.
pgu.transformator$transformLogModulus(value = "numeric", base = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
baseLogarithmic base. (numeric)
The transformed values. (numeric)
transformSquareRoot()Performes a square root transformation for the given values.
pgu.transformator$transformSquareRoot(value = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
The transformed values. (numeric)
transformCubeRoot()Performes a cube root transformation for the given values.
pgu.transformator$transformCubeRoot(value = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
The transformed values. (numeric)
transformArcsine()Performes an arcsine transformation for the given values.
pgu.transformator$transformArcsine(value = "numeric", lambda = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
lambdaNormalization factor. (numeric)
The transformed values. (numeric)
transformInverse()Performes an inverse transformation for the given values.
pgu.transformator$transformInverse(value = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
The transformed values. (numeric)
transformTukeyLadderOfPowers()Performes a tukeyLOP transformation for the given values.
pgu.transformator$transformTukeyLadderOfPowers( value = "numeric", lambda = "numeric" )
valueA numeric or a vector of numerics to be analyzed. (numeric)
lambdaLambda factor. (numeric)
The transformed values. (numeric)
transformBoxCox()Performes a boxcox transformation for the given values.
pgu.transformator$transformBoxCox(value = "numeric", lambda = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
lambdaLambda factor. (numeric)
The transformed values. (numeric)
inverseTransformNumeric()Inverse transforms the given numeric values, that are assigned to a user defined attribute.
pgu.transformator$inverseTransformNumeric( value = "numeric", feature = "character" )
valueA numeric or a vector of numerics to be tranformed. (numeric)
featureThe attribute which the given values are assigned to. (character)
An inverse transfromed version of the given numeric or vector of numerics. (numeric)
inverseTransformData()Inverse transforms each attribute of the assigned data frame, by calling the class' tranformNumeric function. The respective lambda values of the individual attributes of the data frame are read from the lambda attribute of the instance variable trafoParameter.
pgu.transformator$inverseTransformData(data = "tbl_df")
dataA data frame. (tibble:tibble)
inverseTransformLogModulus()Performes an inverse log transformation for the given values, based on a user defined base value.
pgu.transformator$inverseTransformLogModulus( value = "numeric", base = "numeric" )
valueA numeric or a vector of numerics to be analyzed. (numeric)
baseLogarithmic base. (numeric)
The transformed values. (numeric)
inverseTransformSquareRoot()Performes an inverse square root transformation for the given values.
pgu.transformator$inverseTransformSquareRoot(value = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
The transformed values. (numeric)
inverseTransformCubeRoot()Performes an inverse cube root transformation for the given values.
pgu.transformator$inverseTransformCubeRoot(value = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
The transformed values. (numeric)
inverseTransformArcsine()Performes an inverse arcsine transformation for the given values.
pgu.transformator$inverseTransformArcsine( value = "numeric", lambda = "numeric" )
valueA numeric or a vector of numerics to be analyzed. (numeric)
lambdaNormalization factor. (numeric)
The transformed values. (numeric)
inverseTransformInverse()Performes an inverse inverse-transformation for the given values.
pgu.transformator$inverseTransformInverse(value = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
The transformed values. (numeric)
inverseTransformTukeyLadderOfPowers()Performes an inverse tukeyLOP transformation for the given values.
pgu.transformator$inverseTransformTukeyLadderOfPowers( value = "numeric", lambda = "numeric" )
valueA numeric or a vector of numerics to be analyzed. (numeric)
lambdaLambda factor. (numeric)
The transformed values. (numeric)
inverseTransformBoxCox()Performes an inverse boxcox transformation for the given values.
pgu.transformator$inverseTransformBoxCox(value = "numeric", lambda = "numeric")
valueA numeric or a vector of numerics to be analyzed. (numeric)
lambdaLambda factor. (numeric)
The transformed values. (numeric)
fit()Estimate all transformation parameters(lambda, addConst,...) for each attribute of a given data frame. The function calls the class' functions calculateAddConst and estimateLambda. The results are stored in the respective attributes of the instance variable trafoParameter.
pgu.transformator$fit(data = "tbl_df")
dataA data frame. (tibble:tibble)
mutateData()Mutates the values of each attribute of a given data frame. Here, mutation is defined as the cesecutive sequence of the class' functions mirrorData, tranlsateData and transfromData.
pgu.transformator$mutateData(data = "tbl_df")
dataA data frame. (tibble:tibble)
A mutated data frame. (tibble::tibble)
reverseMutateData()Re-mutates the values of each attribute of a given data frame. Here, re-mutation is defined as the cesecutive sequence of the class' functions inverseTransformData, backTranslateData, mirrorData
pgu.transformator$reverseMutateData(data = "tbl_df")
dataA data frame. (tibble:tibble)
A mutated data frame. (tibble::tibble)
clone()The objects of this class are cloneable with this method.
pgu.transformator$clone(deep = FALSE)
deepWhether to make a deep clone.
Sebastian Malkusch, malkusch@med.uni-frankfurt.de
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.