Description Format Details Active bindings Methods Author(s)
Normalization of data. Part of pguIMP.
R6::R6Class object.
Performs a data normalization in order to achieve a standardized version of the dataframe. This object is used by the shiny based gui and is not for use in individual R-scripts!
normAgentAlphabetReturns the instance variable normAgentAlphabt.
normAgentReturns the instance variable normAgent. (character)
setNormAgentSets the instance variable normAgent. (character)
featuresReturns instance variable features. (character)
normParameterReturns the instance variable normParameter.
new()Creates and returns a new pgu.normalizer object.
pgu.normalizer$new(data_df = "tbl_df")
data_dfThe data to be analyzed. (tibble::tibble)
A new pgu.normalizer object.
(pguIMP::pgu.normalizer)
finalize()Clears the heap and
indicates that instance of pgu.normalizer is removed from heap.
pgu.normalizer$finalize()
print()Prints instance variables of a pgu.normalizer object.
pgu.normalizer$print()
string
detectNormParameter()Resets instance variable normParameter
pgu.normalizer$detectNormParameter(data_df = "tbl_df")
data_dfDataframe to be analyzed. (tibble::tibble)
scale_data()Scales a tibble using the method defined by the instance variable normAgent
pgu.normalizer$scale_data(data_df = "tbl_df")
data_dfDataframe to be scaled (tible::tibble)
A normalized version of the dataframe. (tibble::tibble)
scale_minMax()Scales a tibble using min-max normalization
pgu.normalizer$scale_minMax(data_df = "tbl_df")
data_dfDataframe to be scaled (tibble::tibble)
A min-max normalized version of the dataframe
scale_minMax_numeric()Scales a numeric object using min-max normalization
pgu.normalizer$scale_minMax_numeric(values = "numeric", feature = "character")
valuesValues to be scaled. Either a number or a vector (numeric)
featureCharacter to idtentify the proper normalization parameters. (character)
A min-max normalized version of the numeric object
scale_mean()Scales a tibble using mean normalization
pgu.normalizer$scale_mean(data_df = "tbl_df")
data_dfDataframe to be scaled. (tibble::tibble)
A mean normalized version of the dataframe
scale_mean_numeric()Scales a numeric object using mean normalization
pgu.normalizer$scale_mean_numeric(values = "numeric", feature = character)
valuesValues to be scaled. Either a number or a vector (numeric)
featureCharacter to idtentify the proper normalization parameters. (character)
A mean normalized version of the numeric object
scale_zScore()Scales a tibble using z-score normalization
pgu.normalizer$scale_zScore(data_df = "tbl_df")
data_dfDataframe to be scaled (tibble::tibble)
A z-score normalized version of the dataframe
scale_zScore_numeric()Scales a numeric object using z-score normalization
pgu.normalizer$scale_zScore_numeric(values = "numeric", feature = character)
valuesValues to be scaled. Either a number or a vector (numeric)
featureCharacter to idtentify the proper normalization parameters. (character)
A z-score normalized version of the numeric object
rescale_data()Rescales a tibble using the method defined by the instance variable normAgent
pgu.normalizer$rescale_data(data_df = "tbl_df")
data_dfNormalized dataframe to be rescaled (tible::tibble)
A rescaled version of the normalized dataframe. (tibble::tibble)
rescale_minMax()Rescales a tibble using min-max normalization
pgu.normalizer$rescale_minMax(data_df = "tbl_df")
data_dfNormalized dataframe to be rescaled (tibble::tibble)
A rescaled version of a min-max normalized dataframe
rescale_minMax_numeric()Rescales a numeric object using min-max normalization
pgu.normalizer$rescale_minMax_numeric(values = "numeric", feature = character)
valuesNormalized values to be rescaled. Either a number or a vector (numeric)
featureCharacter to idtentify the proper normalization parameters. (character)
Rescaled version of min-max normalized numeric object
rescale_mean()Rescales a tibble using mean normalization
pgu.normalizer$rescale_mean(data_df = "tbl_df")
data_dfNormalized dataframe to be rescaled (tibble::tibble)
A rescaled version of a mean normalized dataframe
rescale_mean_numeric()Rescales a numeric object using mean normalization
pgu.normalizer$rescale_mean_numeric(values = "numeric", feature = character)
valuesNormalized values to be rescaled. Either a number or a vector (numeric)
featureCharacter to idtentify the proper normalization parameters. (character)
Rescaled version of mean normalized numeric object
rescale_zScore()Rescales a tibble using z-score normalization
pgu.normalizer$rescale_zScore(data_df = "tbl_df")
data_dfNormalized dataframe to be rescaled (tibble::tibble)
A rescaled version of a z-score normalized dataframe
rescale_zScore_numeric()Rescales a numeric object using z-score normalization
pgu.normalizer$rescale_zScore_numeric(values = "numeric", feature = character)
valuesNormalized values to be rescaled. Either a number or a vector (numeric)
featureCharacter to idtentify the proper normalization parameters. (character)
Rescaled version of z-score normalized numeric object
featureBarPlot()Displays the distribution of an attribute values as histogram.
pgu.normalizer$featureBarPlot(data_df = "tbl_df", feature = "character")
data_dfdataframe to be analyzed. (tibble::tibble)
featureattribute to be shown. (character)
A histogram. (ggplot2::ggplot)
featureBoxPlotWithSubset()Displays the distribution of an attribute's values as box plot.
pgu.normalizer$featureBoxPlotWithSubset( data_df = "tbl_df", feature = "character" )
data_dfdataframe to be analyzed. (tibble::tibble)
featureattribute to be shown. (character)
A box plot. (ggplot2::ggplot)
featurePlot()Displays the distribution of an attribute's values as a composition of a box plot and a histogram.
pgu.normalizer$featurePlot(data_df = "tbl_df", feature = "character")
data_dfdataframe to be analyzed. (tibble::tibble)
featureattribute to be shown. (character)
A composite plot. (ggplot2::ggplot)
clone()The objects of this class are cloneable with this method.
pgu.normalizer$clone(deep = FALSE)
deepWhether to make a deep clone.
Sebastian Malkusch, malkusch@med.uni-frankfurt.de
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.