R/utils_binomial.R

Defines functions binomial_terminal_two_stage binomial_terminal_one_stage binomial_opchar_one_stage binomial_minus_ess_two_stage binomial_max_ess_2d_two_stage binomial_des_two_stage binomial_des_one_stage

binomial_des_one_stage        <- function(alpha, beta, delta, ratio, Pi0, Pi1,
                                          nCmax, summary) {
  params               <- search_parameters(1, "binomial", nCmax, ratio)
  feasible             <-
    binomial_des_one_stage_cpp(alpha, beta, delta, params$poss_nC,
                               params$poss_nE, params$poss_x, params$poss_y,
                               (length(Pi0) == 1), Pi0, (length(Pi1) == 1),
                               Pi1, summary)
  if (feasible[1, 1] > 0) {
    if (summary) {
      message("..feasible designs identified in the range of ",
              "considered sample sizes.\n  Identifying the optimal design..")
    }
    nrow_feasible      <- nrow(feasible)
    if (nrow_feasible == 1) {
      feasible         <- matrix(c(1, feasible[, 1],
                                   params$poss_nE_orig[feasible[, 1]],
                                   feasible[, -1]), 1)
    } else {
      feasible         <- cbind(1:nrow_feasible, feasible[, 1],
                                params$poss_nE_orig[feasible[, 1]],
                                feasible[, -1])
    }
    colnames(feasible) <- c("index", "n1C", "n1E", "e1", "argmax alpha",
                            "max alpha", "argmin power", "min power")
    feasible           <- tibble::as_tibble(feasible)
    feasible[, 1:4]    <- dplyr::mutate_if(feasible[, 1:4], is.double,
                                           as.integer)
    feasible           <- dplyr::arrange(feasible, .data$n1C,
                                         dplyr::desc(.data$`min power`))
    e1                 <- feasible$e1[1]
    nC                 <- feasible$n1C[1]
    nE                 <- feasible$n1E[1]
    opchar             <-
      binomial_opchar_one_stage(rbind(rep(feasible$`argmax alpha`[1], 2),
                                      feasible$`argmin power`[1] + c(0, delta)),
                                nC, nE, e1)
  } else {
    e1                 <- feasible <- nC <- nE <- opchar <- NULL
    if (summary) {
      message("..no feasible designs identified in range of ",
              "considered maximal allowed sample size.\n  Consider increasing ",
              "nCmax..")
    }
  }
  build_des_one_stage_output(alpha, beta, list(e1 = e1, f1 = e1), delta,
                             feasible, nC, nCmax, nE, opchar, Pi0, Pi1, ratio,
                             summary, "binomial")
}

binomial_des_two_stage        <- function(alpha, beta, delta, ratio, Pi0, Pi1,
                                          nCmax, equal, w, piO, efficacy,
                                          futility, summary) {
  params               <- search_parameters(2, "binomial", nCmax, ratio)
  feasible             <-
    binomial_des_two_stage_cpp(alpha, beta, delta, params$poss_nC,
                               params$poss_nE, params$poss_x, params$poss_y,
                               (length(Pi0) == 1), Pi0, (length(Pi1) == 1), Pi1,
                               equal, efficacy, futility, piO, summary)
  if (feasible[1, 1] > 0) {
    if (summary) {
      message("..feasible designs identified in the range of ",
              "considered sample sizes.\n  Identifying the optimal design...")
    }
    nrow_feasible      <- nrow(feasible)
    if (nrow_feasible == 1) {
      feasible         <- matrix(c(1, feasible[, 1:2],
                                   params$poss_nE_orig[feasible[, 1]],
                                   params$poss_nE_orig[feasible[, 2]],
                                   feasible[, -(1:2)]), 1)
    } else {
      feasible         <- cbind(1:nrow_feasible, feasible[, 1:2],
                                params$poss_nE_orig[feasible[, 1]],
                                params$poss_nE_orig[feasible[, 2]],
                                feasible[, -(1:2)])
    }
    colnames(feasible) <- c("index", "n1C", "n2C", "n1E", "n2E", "e1", "e2",
                            "f1", "argmax alpha", "max alpha", "argmin power",
                            "min power", "ESS(piO,piO)", "ESS(piO,piO+delta)")
    feasible           <- tibble::as_tibble(feasible)
    feasible[, 1:8]    <- dplyr::mutate_if(feasible[, 1:8], is.double,
                                           as.integer)
    feasible           <-
      dplyr::mutate(feasible,
                    `argmax ESS(pi,pi)`       = 0,
                    `max ESS(pi,pi)`          = 0,
                    `argmax_piC ESS(piC,piE)` = 0,
                    `argmax_piE ESS(piC,piE)` = 0,
                    `max ESS(piC,piE)`        = 0,
                    `max N`                   =
                      as.integer(rowSums(feasible[, 2:5])))
    for (i in 1:nrow_feasible) {
      index            <- as.numeric(feasible[i, 2] +
                                       params$max_poss_nC*(feasible[i, 4] - 1))
      max_ESS_1d       <-
        binomial_max_ess_1d_two_stage(as.numeric(feasible[i, 2:3]),
                                      as.numeric(feasible[i, 4:5]),
                                      as.numeric(feasible[i, 6]),
                                      as.numeric(feasible[i, 8]),
                                      params$poss_x[[index]],
                                      params$poss_y[[index]])
      feasible$`argmax ESS(pi,pi)`[i]       <- max_ESS_1d[1]
      feasible$`max ESS(pi,pi)`[i]          <- max_ESS_1d[2]
      max_ESS_2d       <-
        binomial_max_ess_2d_two_stage(as.numeric(feasible[i, 2:3]),
                                      as.numeric(feasible[i, 4:5]),
                                      as.numeric(feasible[i, 6]),
                                      as.numeric(feasible[i, 8]),
                                      params$poss_x[[index]],
                                      params$poss_y[[index]])
      feasible$`argmax_piC ESS(piC,piE)`[i] <- max_ESS_2d[1]
      feasible$`argmax_piE ESS(piC,piE)`[i] <- max_ESS_2d[2]
      feasible$`max ESS(piC,piE)`[i]        <- max_ESS_2d[3]
    }
    feasible$o         <- rowSums(matrix(w, nrow_feasible, 5, TRUE)*
                                    feasible[, c(13:14, 16, 19:20)])
    feasible           <- dplyr::arrange(feasible, .data$o,
                                         dplyr::desc(.data$`min power`))
    if (!efficacy) {
      feasible$e1      <- Inf
    }
    if (!futility) {
      feasible$f1      <- -Inf
    }
    e1                 <- feasible$e1[1]
    e2                 <- feasible$e2[1]
    f1                 <- feasible$f1[1]
    nC                 <- c(feasible$n1C[1], feasible$n2C[1])
    nE                 <- c(feasible$n1E[1], feasible$n2E[1])
    opchar             <-
      binomial_opchar_two_stage(rbind(rep(feasible$`argmax alpha`[1], 2),
                                      feasible$`argmin power`[1] + c(0, delta)),
                                nC, nE, e1, f1, e2, 1:2)
    
  } else {
    e1                 <- e2 <- f1 <- feasible <- nC <- nE <- opchar <- NULL
    if (summary) {
      message("..no feasible designs identified in range of ",
              "considered maximal allowed sample size.\n  Consider increasing ",
              "nCmax..")
    }
  }
  build_des_two_stage_output(alpha, beta,
                             list(e1 = e1, e2 = e2, f1 = f1, f2 = e2), delta,
                             efficacy, NULL, NULL, equal, feasible, futility,
                             NULL, NULL, nC, nCmax, nE, opchar, Pi0, Pi1,
                             piO, ratio, summary, w, "binomial")
}

binomial_max_ess_2d_two_stage <- function(nC, nE, e1, f1, poss_x1, poss_y1) {
  max_ESS_2d <- stats::optim(par     = c(0.5, 0.5),
                             fn      = binomial_minus_ess_two_stage,
                             nC      = nC,
                             nE      = nE,
                             e1      = e1,
                             f1      = f1,
                             poss_x1 = poss_x1,
                             poss_y1 = poss_y1)
  c(max_ESS_2d$par, -max_ESS_2d$value)
}

binomial_minus_ess_two_stage  <- function(pi, nC, nE, e1, f1, poss_x1,
                                          poss_y1) {
  if (!missing(poss_x1)) {
    -binomial_des_ess_two_stage(pi, nC, nE, e1, f1, poss_x1, poss_y1)
  } else {
    -binomial_ess_two_stage(pi, nC, nE, e1, f1)
  }
}

binomial_opchar_one_stage     <- function(pi, nC, nE, e, pmf_pi) {
  if (missing(pmf_pi)) {
    pmf_pi <- binomial_pmf_one_stage(pi, nC, nE, e)
  }
  nrow_pi  <- nrow(pi)
  P        <- numeric(nrow_pi)
  for (i in 1:nrow_pi) {
    P[i]   <- sum(dplyr::filter(pmf_pi, .data$piC == pi[i, 1] &
                                  .data$piE == pi[i, 2] &
                                  .data$decision == "Reject")$`f(x,m|pi)`)
  }
  tibble::tibble(piC     = pi[, 1],
                 piE     = pi[, 2],
                 `P(pi)` = P)
}

binomial_opchar_two_stage     <- function(pi, nC, nE, e1, f1, e2, k, pmf_pi) {
  if (missing(pmf_pi)) {
    pmf_pi         <- binomial_pmf_two_stage(pi, nC, nE, e1, f1, e2, k)
  }
  nrow_pi          <- nrow(pi)
  n                <- c(nC[1] + nE[1], sum(nC) + sum(nE))
  opchar           <- matrix(0, nrow_pi, 13)
  E                <- Fu <- numeric(2)
  for (i in 1:nrow_pi) {
    pmf_i          <- dplyr::filter(pmf_pi, .data$piC == pi[i, 1] &
                                      .data$piE == pi[i, 2])
    for (j in k) {
      E[j]         <- sum(dplyr::filter(pmf_i, .data$decision == "Reject" &
                                          .data$k == j)$`f(x,m|pi)`)
      Fu[j]        <- sum(dplyr::filter(pmf_i, .data$decision == "Do not reject" &
                                          .data$k == j)$`f(x,m|pi)`)
    }
    cum_S          <- cumsum(S <- E + Fu)
    MSS            <- ifelse(any(cum_S == 0.5),
                             0.5*(n[which(cum_S == 0.5)] +
                                    n[which(cum_S == 0.5) + 1]),
                             n[which(cum_S > 0.5)[1]])
    ESS            <- sum(n*S)
    if (any(abs(ESS - n) < 1e-6)) {
      SDSS         <- 0
    } else {
      SDSS         <- sqrt(sum(n^2*S) - ESS^2)
    }
    opchar[i, ]    <- c(pi[i, 1], pi[i, 2], sum(E), ESS, SDSS, MSS, E, Fu, S,
                        n[2])
  }
  colnames(opchar) <- c("piC", "piE", "P(pi)", "ESS(pi)", "SDSS(pi)", "MSS(pi)",
                        paste0(rep(c("E", "F", "S"), each = 2), rep(1:2, 3),
                               "(pi)"), "max N")
  opchar           <- tibble::as_tibble(opchar)
  opchar$`max N`   <- as.integer(opchar$`max N`)
  opchar
}

binomial_pmf_one_stage        <- function(pi, nC, nE, e1) {
  x                                        <- expand.grid(0:nC, 0:nE)
  nrow_pmf                                 <- (nC + 1)*(nE + 1)
  nrow_pi                                  <- nrow(pi)
  nrow_total                               <- nrow_pmf*nrow_pi
  f                                        <- numeric(nrow_total)
  seq_0_nC                                 <- 0:nC
  if (nC == nE) {
    seq_0_nE                               <- seq_0_nC
  } else {
    seq_0_nE                               <- 0:nE
  }
  for (i in 1:nrow_pi) {
    dbinom0                                <- stats::dbinom(seq_0_nC, nC,
                                                            pi[i, 1])
    if (all(nC == nE, pi[i, 1] == pi[i, 2])) {
      dbinom1                              <- dbinom0
    } else {
      dbinom1                              <- stats::dbinom(seq_0_nE, nE,
                                                            pi[i, 2])
    }
    f[(1 + (i - 1)*nrow_pmf):(i*nrow_pmf)] <-
      dbinom0[x[, 1] + 1]*dbinom1[x[, 2] + 1]
  }
  pmf                                      <-
    tibble::tibble(piC         = rep(pi[, 1], each = nrow_pmf),
                   piE         = rep(pi[, 2], each = nrow_pmf),
                   xC          = rep(as.vector(x[, 1]), nrow_pi),
                   xE          = rep(as.vector(x[, 2]), nrow_pi),
                   mC          = rep(as.integer(nC), nrow_total),
                   mE          = rep(as.integer(nE), nrow_total),
                   statistic   = .data$xE - .data$xC,
                   decision    = factor(ifelse(.data$statistic >= e1, "Reject",
                                               "Do not reject")),
                   k           = factor(rep(1, nrow_total), 1),
                   `f(x,m|pi)` = f)
  dplyr::arrange(pmf, .data$piC, .data$piE, .data$xC, .data$xE)
}

binomial_pmf_two_stage        <- function(pi, nC, nE, e1, f1, e2, k) {
  if (e1 == Inf) {
    e1                                           <- nE[1] + 1
  }
  if (f1 == -Inf) {
    f1                                           <- -nC[1] - 1
  }
  pmf                                            <-
    binomial_pmf_two_stage_cpp(pi[1, ], nC, nE, e1, f1, e2, k)
  nrow_pmf                                       <- nrow(pmf)
  nrow_pi                                        <- nrow(pi)
  if (nrow_pi > 1) {
    pmf                                          <-
      rbind(pmf, matrix(0, (nrow_pi - 1)*nrow_pmf, 8))
    for (i in 2:nrow_pi) {
      pmf[(1 + (i - 1)*nrow_pmf):(i*nrow_pmf), ] <-
        binomial_pmf_two_stage_cpp(pi[i, ], nC, nE, e1, f1, e2, k)
    }
  }
  pmf                                            <-
    tibble::tibble(piC         = rep(pi[, 1], each = nrow_pmf),
                   piE         = rep(pi[, 2], each = nrow_pmf),
                   xC          = as.integer(pmf[, 1]),
                   xE          = as.integer(pmf[, 2]),
                   mC          = as.integer(pmf[, 3]),
                   mE          = as.integer(pmf[, 4]),
                   statistic   = as.integer(pmf[, 5]),
                   decision    = factor(c("Do not reject",
                                          "Reject")[pmf[, 6] + 1]),
                   k           = factor(pmf[, 7], k),
                   `f(x,m|pi)` = pmf[, 8])
  dplyr::arrange(pmf, .data$piC, .data$piE, .data$k, .data$xC, .data$xE)
}

binomial_est                  <- function(nC, nE, e1, f1, e2, k, method) {
  terminal <- binomial_terminal_two_stage(nC, nE, e1, f1, e2, k)
  terminal <- dplyr::filter(terminal, .data$decision != "Continue to stage 2")
  est      <- tibble::tibble(xC = rep(terminal$xC, length(method)),
                             xE = rep(terminal$xE, length(method)),
                             mC = rep(terminal$mC, length(method)),
                             mE = rep(terminal$mE, length(method)),
                             decision = rep(terminal$decision, length(method)),
                             k = factor(rep(terminal$k, length(method)), k),
                             method = factor(rep(method, each = nrow(terminal)),
                                             method),
                             `hat(piC)(x,m)` = NA,
                             `hat(piE)(x,m)` = NA,
                             `hat(piD)(x,m)` = NA)
  for (i in 1:length(method)) {
    range                          <- which(est$method == method[i])
    if (method[i] == "naive") {
      est$`hat(piC)(x,m)`[range]   <- terminal$xC/terminal$mC
      est$`hat(piE)(x,m)`[range]   <- terminal$xE/terminal$mE
      est$`hat(piD)(x,m)`[range]   <-
        est$`hat(piE)(x,m)`[range] - est$`hat(piC)(x,m)`[range]
    } else if (method[i] == "bias_sub") {
      for (j in 1:length(range)) {
        est_j                      <- c(terminal$xC[j]/terminal$mC[j],
                                        terminal$xE[j]/terminal$mE[j])
        bias_j                     <-
          binomial_est_niave_bias(matrix(est_j, 1), nC, nE, e1, f1, e2, k)
        est$`hat(piC)(x,m)`[range[j]] <- est_j[1] - bias_j[1]
        est$`hat(piE)(x,m)`[range[j]] <- est_j[2] - bias_j[2]
        est$`hat(piD)(x,m)`[range[j]] <- (est_j[2] - est_j[1]) - bias_j[3]
      }
    }
  }
  est
}

binomial_est_niave_bias       <- function(pi, nC, nE, e1, f1, e2, k, est) {
  pmf <- binomial_pmf_two_stage(pi, nC, nE, e1, f1, e2, k)
  c(sum(pmf$`f(x,m|pi)`*pmf$xC/pmf$mC),
    sum(pmf$`f(x,m|pi)`*pmf$xE/pmf$mE),
    sum(pmf$`f(x,m|pi)`*(pmf$xE/pmf$mE - pmf$xC/pmf$mC))) - c(pi, pi[2] - pi[1])
}

binomial_est_perf             <- function(pi, nC, nE, e1, f1, e2, k, method) {
  pmf    <- binomial_pmf_two_stage(pi, nC, nE, e1, f1, e2, k)
  est    <- binomial_est(nC, nE, e1, f1, e2, k, method)
  perf   <- tibble::tibble(piC                 = rep(pi[, 1], length(method)),
                           piE                 = rep(pi[, 2], length(method)),
                           method              =
                             factor(rep(method, each = nrow(pi)),
                                    levels = method),
                           `E(hat(piC)|pi)`    = NA,
                           `Var(hat(piC)|pi)`  = NA,
                           `Bias(hat(piC)|pi)` = NA,
                           `RMSE(hat(piC)|pi)` = NA,
                           `E(hat(piE)|pi)`    = NA,
                           `Var(hat(piE)|pi)`  = NA,
                           `Bias(hat(piE)|pi)` = NA,
                           `RMSE(hat(piE)|pi)` = NA,
                           `E(hat(piD)|pi)`    = NA,
                           `Var(hat(piD)|pi)`  = NA,
                           `Bias(hat(piD)|pi)` = NA,
                           `RMSE(hat(piD)|pi)` = NA)
  for (i in 1:nrow(perf)) {
    pmf_i                       <-
      dplyr::filter(pmf, .data$piC == perf$piC[i] & .data$piE == perf$piE[i])
    est_i                       <- dplyr::filter(est, method == perf$method[i])
    perf$`E(hat(piC)|pi)`[i]    <- sum(pmf_i$`f(x,m|pi)`*est_i$`hat(piC)(x,m)`)
    perf$`Var(hat(piC)|pi)`[i]  <-
      sum(pmf_i$`f(x,m|pi)`*(est_i$`hat(piC)(x,m)`^2)) -
      perf$`E(hat(piC)|pi)`[i]^2
    perf$`Bias(hat(piC)|pi)`[i] <- perf$`E(hat(piC)|pi)`[i] - perf$piC[i]
    perf$`RMSE(hat(piC)|pi)`[i] <- sqrt(perf$`Var(hat(piC)|pi)`[i] +
                                         perf$`Bias(hat(piC)|pi)`[i]^2)
    perf$`E(hat(piE)|pi)`[i]    <- sum(pmf_i$`f(x,m|pi)`*est_i$`hat(piE)(x,m)`)
    perf$`Var(hat(piE)|pi)`[i]  <-
      sum(pmf_i$`f(x,m|pi)`*(est_i$`hat(piE)(x,m)`^2)) -
      perf$`E(hat(piE)|pi)`[i]^2
    perf$`Bias(hat(piE)|pi)`[i] <- perf$`E(hat(piE)|pi)`[i] - perf$piE[i]
    perf$`RMSE(hat(piE)|pi)`[i] <- sqrt(perf$`Var(hat(piE)|pi)`[i] +
                                          perf$`Bias(hat(piE)|pi)`[i]^2)
    perf$`E(hat(piD)|pi)`[i]    <- sum(pmf_i$`f(x,m|pi)`*est_i$`hat(piD)(x,m)`)
    perf$`Var(hat(piD)|pi)`[i]  <-
      sum(pmf_i$`f(x,m|pi)`*(est_i$`hat(piD)(x,m)`^2)) -
      perf$`E(hat(piD)|pi)`[i]^2
    perf$`Bias(hat(piD)|pi)`[i] <-
      perf$`E(hat(piD)|pi)`[i] - (perf$piE[i] - perf$piC[i])
    perf$`RMSE(hat(piD)|pi)`[i] <- sqrt(perf$`Var(hat(piD)|pi)`[i] +
                                          perf$`Bias(hat(piD)|pi)`[i]^2)
  }
  perf
}

binomial_terminal_one_stage   <- function(nC, nE, e1) {
  x        <- expand.grid(0:nC, 0:nE)
  nrow_pmf <- (nC + 1)*(nE + 1)
  tibble::tibble(xC        = x[, 1],
                 xE        = x[, 2],
                 mC        = rep(as.integer(nC), nrow_pmf),
                 mE        = rep(as.integer(nE), nrow_pmf),
                 statistic = .data$xE - .data$xC,
                 decision  = factor(ifelse(.data$statistic >= e1, "Reject",
                                           "Do not reject")),
                 k         = factor(rep(1, nrow_pmf), 1))
}

binomial_terminal_two_stage   <- function(nC, nE, e1, f1, e2, k) {
  if (e1 == Inf) {
    e1     <- nE[1] + 1
  }
  if (f1 == -Inf) {
    f1     <- -nC[1] - 1
  }
  terminal <- binomial_terminal_two_stage_cpp(nC, nE, e1, f1, e2, k)
  terminal <-
    tibble::tibble(xC        = as.integer(terminal[, 1]),
                   xE        = as.integer(terminal[, 2]),
                   mC        = as.integer(terminal[, 3]),
                   mE        = as.integer(terminal[, 4]),
                   statistic = as.integer(terminal[, 5]),
                   decision  =
                     factor(c("Do not reject", "Reject",
                              "Continue to stage 2")[terminal[, 6]],
                            sort(unique(
                              c("Do not reject", "Reject",
                                "Continue to stage 2")[terminal[, 6]]))),
                   k         = factor(terminal[, 7], k))
  dplyr::arrange(terminal, .data$k, .data$xC, .data$xE)
}

Try the ph2rand package in your browser

Any scripts or data that you put into this service are public.

ph2rand documentation built on March 3, 2021, 1:11 a.m.