R/utils_sat.R

Defines functions sat_opchar_one_stage sat_minus_ess_two_stage sat_max_ess_2d_two_stage sat_des_two_stage sat_des_one_stage

sat_des_one_stage        <- function(alpha, beta, delta, ratio, Pi0, Pi1, nCmax,
                                     summary) {
  params               <- search_parameters(1, "sat", nCmax, ratio)
  feasible             <-
    sat_des_one_stage_cpp(alpha, beta, delta, params$poss_nC,
                                    params$poss_nE, params$poss_x,
                                    params$poss_y, (length(Pi0) == 1),
                                    Pi0, (length(Pi1) == 1), Pi1, summary)
  if (feasible[1, 1] > 0) {
    if (summary) {
      message("..feasible designs identified in the range of ",
              "considered sample sizes.\n  Identifying the optimal design..")
    }
    nrow_feasible      <- nrow(feasible)
    if (nrow_feasible == 1) {
      feasible         <- matrix(c(1, feasible[, 1],
                                   params$poss_nE_orig[feasible[, 1]],
                                   feasible[, -1]), 1)
    } else {
      feasible         <- cbind(1:nrow_feasible, feasible[, 1],
                                params$poss_nE_orig[feasible[, 1]],
                                feasible[, -1])
    }
    colnames(feasible) <- c("index", "n1C", "n1E", "eS1", "eT1", "argmax alpha",
                            "max alpha", "argmin power", "min power")
    feasible           <- tibble::as_tibble(feasible)
    feasible[, 1:5]    <- dplyr::mutate_if(feasible[, 1:5], is.double,
                                           as.integer)
    feasible           <- dplyr::arrange(feasible, .data$n1C,
                                         dplyr::desc(.data$`min power`))
    eS1                <- feasible$eS1[1]
    eT1                <- feasible$eT1[1]
    nC                 <- feasible$n1C[1]
    nE                 <- feasible$n1E[1]
    opchar             <-
      sat_opchar_one_stage(rbind(rep(feasible$`argmax alpha`[1], 2),
                                           feasible$`argmin power`[1] +
                                             c(0, delta)), nC, nE, eS1, eT1)
    
  } else {
    eS1                <- eT1 <- feasible <- nC <- nE <- opchar <- NULL
    if (summary) {
      message("..no feasible designs identified in range of ",
              "considered maximal allowed sample size.\n  Consider increasing ",
              "nCmax...")
    }
  }
  build_des_one_stage_output(alpha, beta,
                             list(eS1 = eS1, eT1 = eT1, fS1 = eS1, fT1 = eT1),
                             delta, feasible, nC, nCmax, nE, opchar, Pi0, Pi1,
                             ratio, summary, "sat")
  
}

sat_des_two_stage        <- function(alpha, beta, delta, ratio, Pi0, Pi1, nCmax,
                                     equal, w, piO, efficacy, futility,
                                     summary) {
  params               <- search_parameters(2, "sat", nCmax, ratio)
  feasible             <-
    sat_des_two_stage_cpp(alpha, beta, delta, params$poss_nC,
                                    params$poss_nE, params$poss_x,
                                    params$poss_y, (length(Pi0) == 1), Pi0,
                                    (length(Pi1) == 1), Pi1, equal, efficacy,
                                    futility, piO, summary)
  if (feasible[1, 1] > 0) {
    if (summary) {
      message("..feasible designs identified in the range of ",
              "considered sample sizes.\n  Identifying the optimal design..")
    }
    nrow_feasible      <- nrow(feasible)
    if (nrow_feasible == 1) {
      feasible         <- matrix(c(1, feasible[, 1:2],
                                   params$poss_nE_orig[feasible[, 1]],
                                   params$poss_nE_orig[feasible[, 2]],
                                   feasible[, -(1:2)]), 1)
    } else {
      feasible         <- cbind(1:nrow_feasible, feasible[, 1:2],
                                params$poss_nE_orig[feasible[, 1]],
                                params$poss_nE_orig[feasible[, 2]],
                                feasible[, -(1:2)])
    }
    colnames(feasible) <- c("index", "n1C", "n2C", "n1E", "n2E", "eS1", "eS2",
                            "eT1", "eT2", "fS1", "fT1", "argmax alpha",
                            "max alpha", "argmin power", "min power",
                            "ESS(piO,piO)", "ESS(piO,piO+delta)")
    feasible           <- tibble::as_tibble(feasible)
    feasible[, 1:11]   <- dplyr::mutate_if(feasible[, 1:11], is.double,
                                           as.integer)
    feasible           <-
      dplyr::mutate(feasible,
                    `argmax ESS(pi,pi)`       = 0,
                    `max ESS(pi,pi)`          = 0,
                    `argmax_piC ESS(piC,piE)` = 0,
                    `argmax_piE ESS(piC,piE)` = 0,
                    `max ESS(piC,piE)`        = 0,
                    `max N`                   =
                      as.integer(rowSums(feasible[, 2:5])))
    for (i in 1:nrow_feasible) {
      index            <- as.numeric(feasible[i, 2] +
                                       params$max_poss_nC*(feasible[i, 4] - 1))
      max_ESS_1d       <-
        sat_max_ess_1d_two_stage(as.numeric(feasible[i, 2:3]),
                                           as.numeric(feasible[i, 4:5]),
                                           as.numeric(feasible[i, 6]),
                                           as.numeric(feasible[i, 8]),
                                           as.numeric(feasible[i, 10]),
                                           as.numeric(feasible[i, 11]),
                                           params$poss_x[[index]],
                                           params$poss_y[[index]])
      feasible$`argmax ESS(pi,pi)`[i]       <- max_ESS_1d[1]
      feasible$`max ESS(pi,pi)`[i]          <- max_ESS_1d[2]
      max_ESS_2d       <-
        sat_max_ess_2d_two_stage(as.numeric(feasible[i, 2:3]),
                                           as.numeric(feasible[i, 4:5]),
                                           as.numeric(feasible[i, 6]),
                                           as.numeric(feasible[i, 8]),
                                           as.numeric(feasible[i, 10]),
                                           as.numeric(feasible[i, 11]),
                                           params$poss_x[[index]],
                                           params$poss_y[[index]])
      feasible$`argmax_piC ESS(piC,piE)`[i] <- max_ESS_2d[1]
      feasible$`argmax_piE ESS(piC,piE)`[i] <- max_ESS_2d[2]
      feasible$`max ESS(piC,piE)`[i]        <- max_ESS_2d[3]
    }
    feasible$o         <- rowSums(matrix(w, nrow_feasible, 5, TRUE)*
                                    feasible[, c(16:17, 19, 22:23)])
    feasible           <- dplyr::arrange(feasible, .data$o,
                                         dplyr::desc(.data$`min power`))
    if (!efficacy) {
      feasible$eS1     <- Inf
      feasible$eT1     <- Inf
    }
    if (!futility) {
      feasible$fS1     <- -Inf
      feasible$fT1     <- -Inf
    }
    eS1                <- feasible$eS1[1]
    eS2                <- feasible$eS2[1]
    eT1                <- feasible$eT1[1]
    eT2                <- feasible$eT2[1]
    fS1                <- feasible$fS1[1]
    fT1                <- feasible$fT1[1]
    nC                 <- c(feasible$n1C[1], feasible$n2C[1])
    nE                 <- c(feasible$n1E[1], feasible$n2E[1])
    opchar             <-
      sat_opchar_two_stage(rbind(rep(feasible$`argmax alpha`[1], 2),
                                           feasible$`argmin power`[1] +
                                             c(0, delta)), nC, nE, eS1, eT1,
                                     fS1, fT1, eS2, eT2, 1:2)
  } else {
    eS1                <- eS2 <- eT1 <-    eT2 <- feasible <- fS1 <- fT1 <-
                           nC <-  nE <- opchar <- NULL
    if (summary) {
      message("..no feasible designs identified in range of ",
              "considered maximal allowed sample size.\n  Consider increasing ",
              "nCmax..")
    }
  }
  build_des_two_stage_output(alpha, beta,
                             list(eS1 = eS1, eS2 = eS2, eT1 = eT1, eT2 = eT2,
                                  fS1 = fS1, fT1 = fT1, fS2 = eS2, fT2 = eT2),
                             delta, efficacy, NULL, NULL, equal, feasible,
                             futility, NULL, NULL, nC, nCmax, nE, opchar, Pi0,
                             Pi1, piO, ratio, summary, w, "sat")
}

sat_max_ess_2d_two_stage <- function(nC, nE, eS1, eT1, fS1, fT1, poss_x1,
                                     poss_y1) {
  max_ESS_2d <- stats::optim(par     = c(0.5, 0.5),
                             fn      = sat_minus_ess_two_stage,
                             nC      = nC,
                             nE      = nE,
                             eS1     = eS1,
                             eT1     = eT1,
                             fS1     = fS1,
                             fT1     = fT1,
                             poss_x1 = poss_x1,
                             poss_y1 = poss_y1)
  c(max_ESS_2d$par, -max_ESS_2d$value)
}

sat_minus_ess_two_stage  <- function(pi, nC, nE, eS1, eT1, fS1, fT1, poss_x1,
                                     poss_y1) {
  if (!missing(poss_x1)) {
    -sat_des_ess_two_stage(pi, nC, nE, eS1, eT1, fS1, fT1, poss_x1,
                                     poss_y1)
  } else {
    -sat_ess_two_stage(pi, nC, nE, eS1, eT1, fS1, fT1)
  }
}

sat_opchar_one_stage     <- function(pi, nC, nE, eS, eT, pmf_pi) {
  if (missing(pmf_pi)) {
    pmf_pi <- sat_pmf_one_stage(pi, nC, nE, eS, eT)
  }
  nrow_pi  <- nrow(pi)
  P        <- numeric(nrow_pi)
  for (i in 1:nrow_pi) {
    P[i]   <- sum(dplyr::filter(pmf_pi, .data$piC == pi[i, 1] &
                                  .data$piE == pi[i, 2] &
                                  .data$decision == "Reject")$`f(x,m|pi)`)
  }
  return(tibble::tibble(piC     = pi[, 1],
                        piE     = pi[, 2],
                        `P(pi)` = P))
}

sat_opchar_two_stage     <- function(pi, nC, nE, eS1, eT1, fS1, fT1, eS2, eT2,
                                     k, pmf_pi) {
  if (missing(pmf_pi)) {
    pmf_pi         <- sat_pmf_two_stage(pi, nC, nE, eS1, eT1, fS1,
                                                  fT1, eS2, eT2, k)
  }
  nrow_pi          <- nrow(pi)
  n                <- c(nC[1] + nE[1], sum(nC) + sum(nE))
  opchar           <- matrix(0, nrow_pi, 13)
  E                <- Fu <- numeric(2)
  for (i in 1:nrow_pi) {
    for (j in k) {
      E[j]         <- sum(dplyr::filter(pmf_pi, .data$piC == pi[i, 1] &
                                          .data$piE == pi[i, 2] &
                                          .data$decision == "Reject" &
                                          .data$k == j)$`f(x,m|pi)`)
      Fu[j]        <- sum(dplyr::filter(pmf_pi, .data$piC == pi[i, 1] &
                                          .data$piE == pi[i, 2] &
                                          .data$decision == "Do not reject" &
                                          .data$k == j)$`f(x,m|pi)`)
    }
    cum_S          <- cumsum(S <- E + Fu)
    MSS            <- ifelse(any(cum_S == 0.5),
                             0.5*(n[which(cum_S == 0.5)] +
                                    n[which(cum_S == 0.5) + 1]),
                             n[which(cum_S > 0.5)[1]])
    ESS            <- sum(n*S)
    if (any(abs(ESS - n) < 1e-6)) {
      SDSS         <- 0
    } else {
      SDSS         <- sqrt(sum(n^2*S) - ESS^2)
    }
    opchar[i, ]    <- c(pi[i, 1], pi[i, 2], sum(E), ESS, SDSS, MSS, E, Fu, S,
                        n[2])
  }
  colnames(opchar) <- c("piC", "piE", "P(pi)", "ESS(pi)", "SDSS(pi)", "MSS(pi)",
                        paste0(rep(c("E", "F", "S"), each = 2), rep(1:2, 3),
                              "(pi)"), "max N")
  opchar           <- tibble::as_tibble(opchar)
  opchar$`max N`   <- as.integer(opchar$`max N`)
  opchar
}

sat_pmf_one_stage        <- function(pi, nC, nE, eS1, eT1) {
  x                                        <- expand.grid(0:nC, 0:nE)
  nrow_pmf                                 <- (nC + 1)*(nE + 1)
  nrow_pi                                  <- nrow(pi)
  nrow_total                               <- nrow_pmf*nrow_pi
  f                                        <- numeric(nrow_total)
  seq_0_nC                                 <- 0:nC
  if (nC == nE) {
    seq_0_nE                               <- seq_0_nC
  } else {
    seq_0_nE                               <- 0:nE
  }
  for (i in 1:nrow_pi) {
    dbinom0                                <- stats::dbinom(seq_0_nC, nC,
                                                            pi[i, 1])
    if (all(nC == nE, pi[i, 1] == pi[i, 2])) {
      dbinom1                              <- dbinom0
    } else {
      dbinom1                              <- stats::dbinom(seq_0_nE, nE,
                                                            pi[i, 2])
    }
    f[(1 + (i - 1)*nrow_pmf):(i*nrow_pmf)] <-
      dbinom0[x[, 1] + 1]*dbinom1[x[, 2] + 1]
  }
  pmf                                      <-
    tibble::tibble(piC         = rep(pi[, 1], each = nrow_pmf),
                   piE         = rep(pi[, 2], each = nrow_pmf),
                   xC          = rep(as.vector(x[, 1]), nrow_pi),
                   xE          = rep(as.vector(x[, 2]), nrow_pi),
                   mC          = rep(as.integer(nC), nrow_total),
                   mE          = rep(as.integer(nE), nrow_total),
                   statisticS  = .data$xE,
                   statisticT  = .data$xE - .data$xC,
                   decision    = factor(ifelse((.data$statisticS >= eS1) &
                                               (.data$statisticT >= eT1),
                                        "Reject", "Do not reject")),
                   k           = factor(rep(1, nrow_total), 1),
                   `f(x,m|pi)` = f)
  dplyr::arrange(pmf, .data$piC, .data$piE, .data$xC, .data$xE)
}

sat_pmf_two_stage        <- function(pi, nC, nE, eS1, eT1, fS1, fT1, eS2, eT2,
                                     k) {
  if (eS1 == Inf) {
    eS1                                          <- nE[1] + 1
  }
  if (eT1 == Inf) {
    eT1                                          <- nE[1] + 1
  }
  if (fS1 == -Inf) {
    fS1                                          <- -1
  }
  if (fT1 == -Inf) {
    fT1                                          <- -nC[1] - 1
  }
  pmf                                            <-
    sat_pmf_two_stage_cpp(pi[1, ], nC, nE, eS1, eT1, fS1, fT1, eS2,
                                    eT2, k)
  nrow_pmf                                       <- nrow(pmf)
  nrow_pi                                        <- nrow(pi)
  if (nrow_pi > 1) {
    pmf                                          <-
      rbind(pmf, matrix(0, (nrow_pi - 1)*nrow_pmf, 9))
    for (i in 2:nrow_pi) {
      pmf[(1 + (i - 1)*nrow_pmf):(i*nrow_pmf), ] <-
        sat_pmf_two_stage_cpp(pi[i, ], nC, nE, eS1, eT1, fS1, fT1,
                                        eS2, eT2, k)
    }
  }
  pmf                                            <-
    tibble::tibble(piC         = rep(pi[, 1], each = nrow_pmf),
                   piE         = rep(pi[, 2], each = nrow_pmf),
                   xC          = as.integer(pmf[, 1]),
                   xE          = as.integer(pmf[, 2]),
                   mC          = as.integer(pmf[, 3]),
                   mE          = as.integer(pmf[, 4]),
                   statisticS  = as.integer(pmf[, 5]),
                   statisticD  = as.integer(pmf[, 6]),
                   decision    = factor(c("Do not reject",
                                          "Reject")[pmf[, 7] + 1]),
                   k           = factor(pmf[, 8], k),
                   `f(x,m|pi)` = pmf[, 9])
   dplyr::arrange(pmf, .data$piC, .data$piE, .data$k, .data$xC, .data$xE)
}

sat_terminal_one_stage   <- function(nC, nE, eS1, eT1) {
  x        <- expand.grid(0:nC, 0:nE)
  nrow_pmf <- (nC + 1)*(nE + 1)
  tibble::tibble(xC         = x[, 1],
                 xE         = x[, 2],
                 mC         = rep(as.integer(nC), nrow_pmf),
                 mE         = rep(as.integer(nE), nrow_pmf),
                 statisticS = .data$xE,
                 statisticT = .data$xE - .data$xC,
                 decision   = factor(ifelse(all(.data$statisticS >= eS1,
                                                .data$statisticT >= eT1),
                                            "Reject", "Do not reject")),
                 k          = factor(rep(1, nrow_pmf), 1))
}

sat_terminal_two_stage   <- function(nC, nE, eS1, eT1, fS1, fT1, eS2, eT2, k) {
  if (eS1 == Inf) {
    eS1    <- nE[1] + 1
  }
  if (eT1 == Inf) {
    eT1    <- nE[1] + 1
  }
  if (fS1 == -Inf) {
    fS1    <- -1
  }
  if (fT1 == -Inf) {
    fT1    <- -nC[1] - 1
  }
  terminal <- sat_terminal_two_stage_cpp(nC, nE, eS1, eT1, fS1, fT1,
                                                   eS2, eT2, k)
  terminal <-
    tibble::tibble(xC         = as.integer(terminal[, 1]),
                   xE         = as.integer(terminal[, 2]),
                   mC         = as.integer(terminal[, 3]),
                   mE         = as.integer(terminal[, 4]),
                   statisticS = as.integer(terminal[, 5]),
                   statisticT = as.integer(terminal[, 6]),
                   decision   =
                     factor(c("Do not reject", "Reject",
                              "Continue to stage 2")[terminal[, 7]],
                            sort(unique(
                              c("Do not reject", "Reject",
                                "Continue to stage 2")[terminal[, 7]]))),
                   k          = factor(terminal[, 8], k))
  dplyr::arrange(terminal, .data$k, .data$xC, .data$xE)
}

Try the ph2rand package in your browser

Any scripts or data that you put into this service are public.

ph2rand documentation built on March 3, 2021, 1:11 a.m.