Nothing
#' Compute operating characteristics using BOIN12
#'
#' `oc_boin12()` uses the BOIN12 design to compute operating charateristics of a user-specificed trial scenario.
#' This design places significance on optimizing utility and the toxicity–efficacy trade-off.
#' @param ndose Integer. Number of dose levels. (**Required**)
#' @param target_t Numeric. Target toxicity probability. (**Required**)
#' @param lower_e Numeric. Minimum acceptable efficacy probability. (**Required**)
#' @param ncohort Integer. Number of cohorts. (Default is `10`)
#' @param cohortsize Integer. Size of a cohort. (Default is `3`)
#' @param startdose Integer. Starting dose level. (Default is `1`)
#' @param OBD Integer. True index of the Optimal Biological Dose (OBD) for the trial scenario. (Default is 0)
#' - If set to `0`: Random OBD will be selected.
#' - Other: Treat this argument as the true OBD.
#' @param psafe Numeric. Early stopping cutoff for toxicity. (Default is `0.95`)
#' @param pfutility Numeric. Early stopping cutoff for efficacy. (Default is `0.95`)
#' @param ntrial Integer. Number of random trial replications. (Default is `10000`)
#' @param utilitytype Integer. Type of utility structure. (Default is `1`)
#' - If set to `1`: Use preset weights (w11 = 0.6, w00 = 0.4)
#' - If set to `2`: Use (w11 = 1, w00 = 0)
#' - Other: Use user-specified values from `u1` and `u2`.
#' @param u1 Numeric. Utility parameter w_11. (0-100)
#' @param u2 Numeric. Utility parameter w_00. (0-100)
#' @param prob Fixed probability vectors. If not specified, a random scenario is used by default.
#' Use this parameter to provide fixed probability vectors as a list of the following named elements:
#' - `pE`: Numeric vector of efficacy probabilities for each dose level.
#' - `pT`: Numeric vector of toxicity probabilities for each dose level.
#' - `obd`: Integer indicating the index of the true Optimal Biological Dose (OBD).
#' - `mtd`: Integer indicating the index of the true Maximum Tolerated Dose (MTD).
#'
#' For example:
#' ```r
#' prob <- list(
#' pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
#' pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
#' obd = 3,
#' mtd = 2
#' )
#' ```
#' @return A list containing operating characteristics such as:
#' \describe{
#' \item{bd.sel}{OBD selection percentage}
#' \item{od.sel}{Favorable dose selection percentage}
#' \item{bd.pts}{Average percentage of patients at the OBD }
#' \item{od.pts}{Average percentage of patients at the favorable doses}
#' \item{earlystop}{Percentage of early stopped trials}
#' \item{overdose}{Overdose patients percentage }
#' \item{poorall}{Poor allocation percentage}
#' \item{ov.sel}{Overdose selection percentage}
#' }
#' @examples
#' oc_boin12(
#' ndose = 5,
#' target_t = 0.3,
#' lower_e = 0.4,
#' ntrial = 10,
#' )
#'
#' @export
# set.seed(30)
oc_boin12 <- function(ndose, target_t, lower_e, ncohort = 10,
cohortsize = 3, startdose = 1, OBD = 0,
psafe = 0.95, pfutility = 0.95,
ntrial = 10000, utilitytype = 1,
u1, u2, prob = NULL) {
if (utilitytype == 1) {
u1 <- 60
u2 <- 40
} else if (utilitytype == 2) {
u1 <- 100
u2 <- 0
}
n.earlystop <- ncohort * cohortsize
p.saf <- 0.6 * target_t
p.tox <- 1.4 * target_t
N1 <- 6
N2 <- 9
randomtype <- 1
poorall <- 0
incoherent <- 0
overdose <- 0
bd.sel <- 0
bd.pts <- 0
od.sel <- 0
ov.sel <- 0
od.pts <- 0
ntox <- 0
neff <- 0
npts <- ncohort * cohortsize
YT <- matrix(rep(0, ndose * ntrial), ncol = ndose) # store toxicity outcome
YE <- matrix(rep(0, ndose * ntrial), ncol = ndose) # store efficacy outcome
N <- matrix(rep(0, ndose * ntrial), ncol = ndose) # store the number of patients
dselect <- rep(0, ntrial) # store the selected dose level
durationV <- rep(0, ntrial)
sel <- rep(0, ndose)
pts <- rep(0, ndose)
dlt <- rep(0, ndose)
eff <- rep(0, ndose)
poorall <- 0
temp <- get.boundary(target_t, lower_e, ncohort, cohortsize, cutoff.eli = psafe, cutoff.eli.E = pfutility)
b.e <- temp[4, ] # escalation boundary
b.d <- temp[3, ] # deescalation boundary
b.elim <- temp[2, ] # elimination boundary
b.elimE <- temp[5, ]
u01 <- 100
u10 <- 0
u11 <- u1
u00 <- u2
utility <- c(u11, u10, u01, u00)
# Assume independence between toxicity and efficacy
targetP <- c(lower_e * target_t, target_t * (1 - lower_e), (1 - target_t) * lower_e, (1 - target_t) * (1 - lower_e))
# Calculate the benchmark utility
uu <- sum(targetP * utility) # highest unacceptable utility
uu <- uu + (100 - uu) / 2 # benchmark utility (i.e., desirable utility)
# Calculate true utility
p10 <- p01 <- p00 <- p11 <- rep(0, ndose)
if (FALSE) {
for (d in 1:ndose) {
p11[d] <- integrate(f1, bn.m1 = qnorm(pT.true[d]), bn.m2 = qnorm(pE.true[d]), rho = rho, lower = 0, upper = Inf)$value
p10[d] <- pT.true[d] - p11[d]
p01[d] <- pE.true[d] - p11[d]
p00[d] <- 1 - p11[d] - p10[d] - p01[d]
}
}
for (trial in 1:ntrial) {
if (!is.null(prob)) {
probs <- prob
} else {
probs <- simprob(ndose, lower_e, target_t, u1, u2, randomtype, OBD = OBD)
}
jj <- probs$pE
kk <- probs$pT
pE.true <- jj
pT.true <- kk
u.true <- (u1 * pE.true + (1 - pT.true) * u2)
bd <- probs$obd
mtd <- probs$mtd
yT <- yE <- rep(0, ndose) ## number of DLT/efficacy at each dose level
y01 <- y10 <- y11 <- y00 <- rep(0, ndose) ## number of different outcomes at each dose level
n <- rep(0, ndose) ## number of patients treated at each dose level
earlystop <- 0 ## indicate whether the trial terminates early
d <- startdose ## starting dose level
elimi <- rep(0, ndose) ## whether doses are eliminated due to toxicity
elimiE <- rep(0, ndose) ## whether doses are eliminated due to efficacy
safe <- 0
posH <- rep(1 - uu / 100, ndose)
duration <- 0
for (i in 1:ncohort) {
T.time <- 0 # obscohort$t.tox
E.time <- 0 # obscohort$t.tox
inter.arrival <- 0 # cumsum(rexp(cohortsize,rate=accrual.rate))
t.all.seen <- 0 # inter.arrival+pmax(T.time,E.time)
duration <- duration + max(t.all.seen)
n[d] <- n[d] + cohortsize
wT <- sum(runif(cohortsize) < pT.true[d])
yT[d] <- yT[d] + wT
wE <- sum(runif(cohortsize) < pE.true[d])
yE[d] <- yE[d] + wE
nc <- n[d] / cohortsize
# determine whether current dose level is overly toxic
if (!is.na(b.elim[nc])) {
if (yT[d] >= b.elim[nc]) {
elimi[d:ndose] <- 1
if (d == 1) {
earlystop <- 1
break
}
}
}
if (!is.na(b.elimE[nc])) {
if (yE[d] <= b.elimE[nc]) {
elimi[d] <- 1
}
}
if (sum(elimi == 1) == ndose) {
earlystop <- 1
break
}
u_curr <- (u1 * yE[d] / n[d] + (1 - yT[d] / n[d]) * u2) / 100 * n[d]
posH[d] <- 1 - pbeta(uu / 100, 1 + u_curr, n[d] - u_curr + 1)
posH <- posH * (1 - elimi)
if (n[d] >= N1) {
safe <- 1
} else {
safe <- 0
}
if (n[d] >= n.earlystop) {
break
}
if (yT[d] >= b.d[nc] && d != 1) {
if (sum(elimi[1:(d - 1)] == 0) > 0) {
d_opt <- max(which(elimi[1:(d - 1)] == 0))
} else {
if (elimi[d] == 1) {
earlystop <- 1
break
} else {
d_opt <- d
}
}
} else if (yT[d] >= b.d[nc] && d == 1) {
if (elimi[d] == 0) {
d_opt <- d
} else {
earlystop <- 1
break
}
} else {
admi_set <- d
if (d > 1) {
if (sum(elimi[1:(d - 1)] == 0) > 0) {
admi_set <- c(admi_set, max(which(elimi[1:(d - 1)] == 0)))
}
}
if (d < ndose) {
if (safe == 0) {
if (sum(elimi[(d + 1):ndose] == 0) > 0) {
admi_set <- c(admi_set, d + min(which(elimi[(d + 1):ndose] == 0)))
}
} else {
if (yT[d] <= b.e[nc] && sum(elimi[(d + 1):ndose] == 0) > 0) {
admi_set <- c(admi_set, d + min(which(elimi[(d + 1):ndose] == 0)))
}
}
}
temp.posH <- posH[admi_set] + runif(length(admi_set)) * (10^-15)
d_opt <- admi_set[which.max(temp.posH)]
}
if (elimi[d_opt] == 1) {
earlystop <- 1
break
}
if (sum(elimi) == ndose) {
earlystop <- 1
break
}
if (d < ndose) {
if (sum(elimi[(d + 1):ndose] == 0) > 0) {
d_temp <- d + min(which(elimi[(d + 1):ndose] == 0))
if (n[d] >= N2 && n[min(d_temp, ndose)] == 0 && yT[d] < b.d[n[d] / cohortsize]) { # nolint: line_length_linter.
d_opt <- d_temp
}
}
}
d <- d_opt
}
YT[trial, ] <- yT # nolint: object_name_linter.
YE[trial, ] <- yE
N[trial, ] <- n
durationV[trial] <- duration
if (earlystop == 0) {
pT <- (yT + 0.05) / (n + 0.1)
pE <- (yE + 0.05) / (n + 0.1)
pT <- pava(pT, n + 0.1) + 0.001 * seq(1, ndose)
pE <- peestimate(yE, n)
u <- u1 * pE + (1 - pT) * u2
u[elimi == 1] <- -100
u[elimiE == 1] <- -100
u[n == 0] <- -100
d_mtd <- which.min(abs(pT - target_t))
d_opt <- which.max(u[1:d_mtd])
dselect[trial] <- d_opt
if (d_opt == bd) {
bd.sel <- bd.sel + 1 / ntrial * 100
}
if (abs(u.true[d_opt] - u.true[bd]) <= (0.05 * u.true[bd]) && d_opt <= mtd) {
od.sel <- od.sel + 1 / ntrial * 100
}
if (pT.true[d_opt] > (target_t + 0.1)) {
ov.sel <- ov.sel + 1 / ntrial * 100
}
sel[dselect[trial]] <- sel[dselect[trial]] + 1 / ntrial * 100
} else {
dselect[trial] <- 99
}
earlystop <- sum(dselect == 99) / ntrial * 100
if (n[bd] < (npts / ndose)) {
poorall <- poorall + 1 / ntrial * 100
}
overdose <- overdose + sum(n[pT.true > (target_t + 0.1)]) / ntrial / npts * 100
bd.pts <- bd.pts + n[bd] / ntrial / npts * 100
od.pts <- od.pts + sum(n[abs(u.true[1:mtd] - u.true[bd]) <= (0.05 * u.true[bd])]) / ntrial / npts * 100
pts <- pts + n / ntrial
dlt <- dlt + yT / ntrial
eff <- eff + yE / ntrial
ntox <- ntox + sum(yT) / ntrial
neff <- neff + sum(yE) / ntrial
}
sel <- round(sel, 1)
pts <- round(pts, 1)
dlt <- round(dlt, 1)
u.true <- round(u.true, 1)
earlystop <- sum(dselect == 99) / ntrial * 100
results <- list(
bd.sel = bd.sel, od.sel = od.sel, bd.pts = bd.pts, od.pts = od.pts,
earlystop = earlystop, ntox = ntox, neff = neff, u.mean = 0,
overdose = overdose, poorall = poorall, incoherent = 0, ov.sel = ov.sel
)
results
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.