Description Usage Arguments Details Value Examples
View source: R/plot.RunRMDVal.R
plot.RunRMDVal plot the dose-nTTP estimation in cycle based on the RunRMD estimation.
1 2 |
x |
The output of RunRMD. An S3 object of 'RunRMDVal' class. |
... |
Other plot parameters. |
The plot.RunRMDVal function uses the patient data structure patdata to fit the linear mixed model as specified by formula based on the prior distributions as specified by control. The parameters of the MCMC simulation are specified by iter: the number of iterations, burnin: burn-ins, thin: thinning parameter and chains: number of chains in the MCMC simulation. The target nTTP score is defined by tox.target, default = 0.28.
This function plots the dose-nTTP estimation in cycle based on the RunRMD estimation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # Setup the prior distributions for the phase I dose-finding model:
control <- list(
beta.dose = parm("normal", mean = 0, var = 1000),
beta.other = parm("normal", mean = 0, var = 1000 ),
gamma = parm("normal", mean = 0, var = 100 ),
s2.gamma = parm("invgamma", shape = 0.001, scale = 0.001),
s2.epsilon = parm("invgamma", shape = 0.001, scale = 0.001)
)
# Load the example patient toxicity data:
#data(patdata)
# Estimate the dose-recommendation of the next patient cohort based on the toxicity data:
#res <- RunRMD(data=patdata, control=control, tox.target=0.28,
# iter=2000, burnin=500, thin=1, chains=1)
#plot(res);
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.