R/pif_variance_linear.R

Defines functions pif.variance.linear

Documented in pif.variance.linear

#'@title Approximate Variance for the Potential Impact Fraction
#'  
#'@description Function that calculates approximate variance of the potential 
#'  impact fraction \code{\link{pif}} (linearization).
#'  
#'@param X         Random sample (\code{data.frame}) which includes exposure and
#'  covariates.
#'  
#'@param thetahat  Estimator (\code{vector}) of \code{theta} for the Relative 
#'  Risk function.
#'  
#'@param thetavar   Estimator of variance of \code{thetahat}
#'  
#'@param rr        \code{function} for Relative Risk which uses parameter 
#'  \code{theta}. The order of the parameters shound be \code{rr(X, theta)}.
#'  
#'  
#'  **Optional**
#'  
#'@param cft       Function \code{cft(X)} for counterfactual. Leave empty for 
#'  the Population Attributable Fraction \code{\link{paf}} where counterfactual 
#'  is 0 exposure.
#'  
#'@param weights   Normalized survey \code{weights} for the sample \code{X}.
#'  
#'@param nsim      Number of simulations for estimation of variance
#'  
#'@param check_thetas Checks that theta parameters are correctly inputed
#'  
#'@param check_cft  Check if counterfactual function \code{cft} reduces 
#'  exposure.
#'  
#'@param check_exposure  Check that exposure \code{X} is positive and numeric
#'  
#'@param is_paf Boolean to force paf evaluation.
#'  
#'@importFrom MASS mvrnorm
#'@importFrom stats weighted.mean
#'  
#'@author Rodrigo Zepeda-Tello \email{[email protected]}
#'@author Dalia Camacho-García-Formentí \email{[email protected]}
#'  
#'@seealso \code{\link{pif.variance.approximate.linear}} for \code{\link{pif}} 
#'  variance and \code{\link{pif.confidence}} for confidence intervals of
#'  \code{\link{pif}}
#'  
#' @examples 
#' 
#' #Example 1: Exponential Relative risk
#' #--------------------------------------------
#' set.seed(18427)
#' X <- data.frame(rnorm(100,3,.5))
#' thetahat <- 0.12
#' thetavar <- 0.1
#' pif.variance.linear(X, thetahat, function(X, theta){exp(theta*X)}, 
#'                     thetavar, nsim = 100) 
#' 
#' #Same example with linear counterfactual
#' cft      <- function(X){0.3*X}
#' pif.variance.linear(X, thetahat, function(X, theta){exp(theta*X)}, 
#'                     thetavar, cft, nsim = 100) 
#'                     
#' #Example 2: Multivariate case
#' #--------------------------------------------
#' \dontrun{
#' set.seed(18427)
#' X1 <- rnorm(100, 3,.5)
#' X2 <- runif(100, 1, 1.5)
#' X  <- data.frame(cbind(X1,X2))
#' thetahat <- c(0.1, 0.03)
#' thetavar <- matrix(c(0.1, 0, 0, 0.05), byrow = TRUE, nrow = 2)
#' rr        <- function(X, theta){
#'            .X <- as.matrix(X, ncol = 2)
#'            exp(theta[1]*.X[,1] + theta[2]*.X[,2])
#'            }
#' cft <- function(X){0.5*X}
#' pif.variance.linear(X, thetahat, rr, thetavar, cft, nsim = 100) 
#' }
#'@keywords internal
#'@export

pif.variance.linear <- function(X, thetahat, rr, thetavar,
                                cft = NA, 
                                weights =  rep(1/nrow(as.matrix(X)),nrow(as.matrix(X))), 
                                check_thetas = TRUE,  check_cft = TRUE, 
                                check_exposure = TRUE, nsim = 1000, is_paf = FALSE){
  #Set X as matrix
  .X    <- as.data.frame(X)
  
  #Check exposure values are greater than zero
  if(check_exposure){ check.exposure(.X) }
  
  #Set a minimum for nsim
  .nsim <- max(nsim, 10)
  
  #Check 
  .thetavar <- as.matrix(thetavar)
  if(check_thetas){ check.thetas(.thetavar, thetahat, NA, NA, "linear") }
  
  #Get the conditional expected pif
  .pifexp <- function(theta){
    pif(X = .X, thetahat = theta, rr = rr, cft = cft, weights = weights,
        Xvar = NA, method = "empirical",  check_exposure = FALSE,
        check_integrals = FALSE,
        check_rr = FALSE,  is_paf = is_paf)
  }
  
  #Get the conditional variance of pif
  .pifvar <- function(theta){
    vr <- pif.conditional.variance.linear(X = .X, thetahat = theta, rr = rr, 
                                          cft = cft, weights = weights, 
                                          check_cft = check_cft, is_paf = is_paf)
    return(vr)
  }
  
  #Get expected value and variance of that
  .meanvec   <- rep(NA, .nsim)
  .varvec    <- rep(NA, .nsim)
  .thetasim  <- mvrnorm(.nsim, thetahat, .thetavar, empirical = TRUE)
  for (i in 1:.nsim){
    .meanvec[i]  <- .pifexp(.thetasim[i,])
    .varvec[i]   <- .pifvar(.thetasim[i,])
  }
  
  #Get variance of that
  meanvec <- .meanvec
  varvec  <- .varvec
  .varpif <- var(.meanvec) + mean(.varvec)
  
  #Return variance
  return(.varpif)
  
}

Try the pifpaf package in your browser

Any scripts or data that you put into this service are public.

pifpaf documentation built on Sept. 29, 2017, 1:03 a.m.