Description Usage Arguments Details Value Author(s) See Also Examples
View source: R/paf_sensitivity.R
Function that plots a sensitivity analysis for the Population 
Attributable Fraction paf by checking how estimates vary when
reducing the exposure's sample X.
| 1 2 3 4 5 6 7 8 9 10 | paf.sensitivity(X, thetahat, rr, method = "empirical",
  weights = rep(1/nrow(as.matrix(X)), nrow(as.matrix(X))), nsim = 50,
  mremove = min(nrow(as.matrix(X))/2, 100), adjust = 1, n = 512,
  ktype = "gaussian", bw = "SJ", ylab = "PAF",
  xlab = "Number of randomly deleted observations for X",
  legendtitle = "Sensitivity Analysis",
  title = paste0("Population Attributable Fraction (PAF) ",
  "Sensitivity Analysis"), colors = c("red", "deepskyblue", "gray75",
  "gray25"), check_exposure = TRUE, check_rr = TRUE,
  check_integrals = TRUE)
 | 
| X | Random sample ( | 
| thetahat | Asymptotically consistent or Fisher consistent estimator
( | 
| rr | 
 **Optional** | 
| method | Either  | 
| weights | Normalized survey  | 
| nsim | Integer with number of samples to include (for each removal) in order to conduct sensitivity analysis. See details for additional information. | 
| mremove | Limit number of measurements of  | 
| adjust | Adjust bandwith parameter (for  | 
| n | Number of equally spaced points at which the density (for 
 | 
| ktype | 
 | 
| bw | Smoothing bandwith parameter (for 
 | 
| ylab | 
 | 
| xlab | 
 | 
| legendtitle | String title for the legend of plot. | 
| title | 
 | 
| colors | String vector with colors for the plot. | 
| check_exposure | 
 | 
| check_rr | 
 | 
| check_integrals | 
 | 
paf.sensitivity conducts a sensitivity analysis of the 
paf estimate by removing mremove elements nsim
times and re-estimating paf with the reduced sample.
plotpaf      ggplot object plotting a 
sensitivity analysis of paf.
Rodrigo Zepeda-Tello rzepeda17@gmail.com
Dalia Camacho-Garc<c3><ad>a-Forment<c3><ad> daliaf172@gmail.com
paf for Population Attributable Fraction estimation, 
paf.plot for a plot of Population Attributable Fraction as a 
function of the relative risk's parameter theta.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | ## Not run: 
#Example 1
#------------------------------------------------------------------
set.seed(3284)
X  <- data.frame(rnorm(250,3))            #Sample
rr <- function(X,theta){exp(X*theta)}     #Relative risk
theta <- 0.1                              #Estimate of theta
paf.sensitivity(X, thetahat = theta, rr = rr)
#Save file
#require(ggplot2)
#ggsave("My Population Attributable Fraction Sensitivity Analysis.pdf")
#Example 2
#--------------------------------------------------------------
set.seed(3284)
X     <- data.frame(rbeta(1000, 1, 0.2))
theta <- c(0.12, 1)
rr    <- function(X, theta){X*theta[1] + theta[2]}
#Using empirical method
paf.sensitivity(X, thetahat = theta, rr = rr, 
                mremove = 100, nsim = 50, 
                title = "My Sensitivity Analysis for example 1")
                
#Same example with kernel
paf.sensitivity(X, theta, rr = rr, 
                 mremove = 100, nsim = 50, method = "kernel", 
                 title = "Sensitivity Analysis for example 1 using kernel")
                 
#Example 3: Plot counterfactual with categorical risks
#------------------------------------------------------------------
set.seed(18427)
X        <- data.frame(Exposure = 
               sample(c("Normal","Overweight","Obese"), 1000, 
                      replace = TRUE, prob = c(0.4, 0.1, 0.5)))
thetahat <- c(1, 1.7, 2)
#Categorical relative risk function
rr <- function(X, theta){
   #Create return vector with default risk of 1
   r_risk <- rep(1, nrow(X))
   
   #Assign categorical relative risk
   r_risk[which(X[,"Exposure"] == "Normal")]      <- thetahat[1]
   r_risk[which(X[,"Exposure"] == "Overweight")]  <- thetahat[2]
   r_risk[which(X[,"Exposure"] == "Obese")]       <- thetahat[3]
   
   return(r_risk)
}
pafplot <- paf.sensitivity(X, thetahat = thetahat, rr = rr, 
                           title = "Sensitivity analysis of PAF for excess-weight",
                           colors = rainbow(4), 
                           legendtitle = "Values", 
                           check_exposure = FALSE, check_rr = FALSE)              
pafplot              
#You can edit pafplot as it is a ggplot object
#require(ggplot2)
#pafplot + theme_classic()
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.