Description Usage Arguments Value Note Author(s) References See Also Examples
View source: R/paf_exponential.R
Function that estimates the Population Attributable Fraction 
paf with exponential relative risk function  rr given 
by 
rr(X, θ) = exp(X
1 2 3 4 5  | paf.exponential(X, thetahat, method = "empirical",
  weights = rep(1/nrow(as.matrix(X)), nrow(as.matrix(X))), Xvar = var(X),
  deriv.method.args = list(), deriv.method = c("Richardson", "complex"),
  adjust = 1, n = 512, ktype = "gaussian", bw = "SJ",
  check_exposure = TRUE, check_rr = TRUE, check_integrals = TRUE)
 | 
X | 
 Random sample (  | 
thetahat | 
 Asymptotically consistent or Fisher consistent estimator ( **Optional**  | 
method | 
 Either   | 
weights | 
 Normalized survey   | 
Xvar | 
 Variance of exposure levels (for   | 
deriv.method.args | 
 
  | 
deriv.method | 
 
  | 
adjust | 
 Adjust bandwith parameter (for   | 
n | 
 Number of equally spaced points at which the density (for 
  | 
ktype | 
 
  | 
bw | 
 Smoothing bandwith parameter (for 
  | 
check_exposure | 
 
  | 
check_rr | 
 
  | 
check_integrals | 
 
  | 
paf Estimate of Population Attributable Fraction with exponential relative risk.
paf.exponential is a wrapper for paf with 
exponential relative risk.
Rodrigo Zepeda-Tello rzepeda17@gmail.com
Dalia Camacho-Garc<c3><ad>a-Forment<c3><ad> daliaf172@gmail.com
Vander Hoorn, S., Ezzati, M., Rodgers, A., Lopez, A. D., & Murray, C. J. (2004). Estimating attributable burden of disease from exposure and hazard data. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. Geneva: World Health Organization, 2129-40.
See paf for Population Attributable Fraction (with 
arbitrary relative risk), and pif for Potential Impact Fraction 
estimation.
See paf.linear for PAF with ready-to-use linear relative risk
function.
For more information on kernels see density.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  | #Example 1: Univariate relative risk
#----------------------------------------
set.seed(18427)
X <- data.frame(Exposure = rnorm(100, 3, .5))
thetahat <- 0.12
paf.exponential(X, thetahat) #Exponential risk given exp(0.12*X)
#This is the same as doing:
paf(X, thetahat, rr = function(X, theta){exp(X*theta)})
#Same example with kernel method
paf.exponential(X, thetahat,  method = "kernel")
#Same example with approximate method
Xmean <- data.frame(mean(X[,"Exposure"]))
Xvar  <- var(X)
paf.exponential(Xmean, thetahat, method = "approximate", Xvar = Xvar)
#Example 2: Multivariate relative risk
#----------------------------------------
X     <- data.frame(Exposure = rnorm(100,2,.7), Covariate = rnorm(100,4,1))
theta <- c(0.3,0.1)
paf.exponential(X,theta) #Exponential risk given exp(0.3*X1 + 0.1*X2)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.