Description Usage Arguments Author(s) Examples
View source: R/pif_confidence_approximate_loglinear.R
Confidence intervals for the Population Attributable Fraction for the approximate method where only mean and variance from a previous study is available.For relative risk inyective functions, the pif is inyective, and intervals can be calculated for log(pif), and then transformed to pif CI.
| 1 2 3 4 5 | 
| Xmean | Mean value of exposure levels from a cross-sectional. | 
| Xvar | Variance of the exposure levels. | 
| thetahat | Estimator (vector or matrix) of  | 
| thetavar | Estimator of variance of  | 
| rr | Function for Relative Risk which uses parameter  **Optional** | 
| cft | Differentiable function  | 
| deriv.method.args | 
 | 
| deriv.method | 
 | 
| check_exposure | Check that exposure  | 
| check_rr | Check that Relative Risk function  | 
| check_integrals | Check that counterfactual and relative risk's expected values are well defined for this scenario. | 
| nsim | Number of simulations for estimation of variance | 
| confidence | Concidence level (0 to 100) default =  | 
| check_thetas | Checks that theta parameters are correctly inputed | 
| is_paf | Boolean forcing evaluation of  | 
Rodrigo Zepeda-Tello rzepeda17@gmail.com
Dalia Camacho-Garc<c3><ad>a-Forment<c3><ad> daliaf172@gmail.com
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #Example 1: Exponential Relative Risk
#--------------------------------------------
set.seed(46987)
rr      <- function(X,theta){exp(X*theta)}
cft     <- function(X){0.4*X}
Xmean   <- data.frame(3)
Xvar    <- 1
theta   <- 0.4
thetavar <- 0.001
pif.confidence.approximate.loglinear(Xmean, Xvar, theta, thetavar, rr, cft,
nsim = 1000)
#Example 2: Multivariate Relative Risk
#--------------------------------------------
X1       <- rnorm(100,3,.5)
X2       <- rnorm(100,4,1)
X        <- data.frame(cbind(X1,X2))
Xmean    <- t(as.matrix(colMeans(X)))
Xvar     <- cov(X)
thetahat <- c(0.12, 0.17)
thetavar  <- matrix(c(0.001, 0.00001, 0.00001, 0.004), byrow = TRUE, nrow = 2)
rr       <- function(X, theta){exp(theta[1]*X[,1] + theta[2]*X[,2])}
pif.confidence.approximate.loglinear(Xmean, Xvar, thetahat, thetavar, 
rr, cft = function(X){0.8*X}, nsim = 100)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.