Nothing
##
## Drew A. Linzer
## drew@votamatic.org
##
## Jeffrey B. Lewis
## jblewis@ucla.edu
##
## January 9, 2014
##
## poLCA: Polytomous variable Latent Class Analysis
##
## Commands to produce examples in user's manual, located at
##
## http://dlinzer.github.io/poLCA
##
library(poLCA)
#########################################################################
## Section 5.4. Predicted cell frequencies from the latent class model ##
#########################################################################
data(gss82)
f <- cbind(PURPOSE,ACCURACY,UNDERSTA,COOPERAT)~1
gss.lc2 <- poLCA(f,gss82,nclass=2)
gss.lc2$predcell
poLCA.table(formula=COOPERAT~1,condition=list(PURPOSE=3,ACCURACY=1,UNDERSTA=2),lc=gss.lc2)
poLCA.table(formula=COOPERAT~UNDERSTA,condition=list(PURPOSE=3,ACCURACY=1),lc=gss.lc2)
########################################################
## Section 5.7. Recognizing and avoiding local maxima ##
########################################################
data(gss82)
f <- cbind(PURPOSE,ACCURACY,UNDERSTA,COOPERAT)~1
mlmat <- matrix(NA,nrow=500,ncol=4)
for (i in 1:500) { # note, this simulation takes some time to run
gss.lc <- poLCA(f,gss82,nclass=3,maxiter=3000,tol=1e-7,verbose=F)
mlmat[i,1] <- gss.lc$llik
o <- order(gss.lc$probs$UNDERSTA[,1],decreasing=T) # ideal, skeptic, believer
mlmat[i,-1] <- gss.lc$P[o]
}
# Table 1
tab <- table(round(mlmat[,1],3))
# -2754.545 & & 258 & & 0.621 & 0.172 & 0.207 \\
# -2755.617 & & 14 & & 0.782 & 0.150 & 0.067 \\
# -2755.739 & & 57 & & 0.796 & 0.162 & 0.043 \\
# -2762.005 & & 70 & & 0.508 & 0.392 & 0.099 \\
# -2762.231 & & 101 & & 0.297 & 0.533 & 0.170 \\
######################################################################
## Section 6.1. Basic latent class modeling with the carcinoma data ##
######################################################################
data(carcinoma)
f <- cbind(A,B,C,D,E,F,G)~1
lc2 <- poLCA(f,carcinoma,nclass=2)
lc3 <- poLCA(f,carcinoma,nclass=3)
lc4 <- poLCA(f,carcinoma,nclass=4,maxiter=5000)
print(lc3)
# Figure 1
lc3 <- poLCA(f,carcinoma,nclass=3,graphs=T,maxiter=400)
##########################################################################
## Section 6.2. Latent class regression modeling with the election data ##
##########################################################################
data(election)
## one covariate
f.party <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG,
MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY
nes.party <- poLCA(f.party,election,nclass=3,verbose=F)
# log-likelihood: -16222.32
probs.start <- poLCA.reorder(nes.party$probs.start,order(nes.party$P,decreasing=T))
nes.party <- poLCA(f.party,election,nclass=3,probs.start=probs.start)
# Figure 2
pidmat <- cbind(1,c(1:7)) # matrix of hypothetical party ID values
exb <- exp(pidmat %*% nes.party$coeff)
matplot(c(1:7),(cbind(1,exb)/(1+rowSums(exb))),
main="Party ID as a predictor of candidate affinity class",
xlab="Party ID: strong Democratic (1) to strong Republican (7)",
ylab="Probability of latent class membership",
ylim=c(0,1),type="l",lwd=3,col=1)
text(5.9,0.35,"Other")
text(5.4,0.7,"Bush affinity")
text(1.8,0.6,"Gore affinity")
## multiple covariates
f.3cov <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG,
MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY*AGE
nes.3cov <- poLCA(f.3cov,election,nclass=3,verbose=F)
# log-likelihood: -16135.39
probs.start <- poLCA.reorder(nes.3cov$probs.start,order(nes.3cov$P,decreasing=T))
nes.3cov <- poLCA(f.3cov,election,nclass=3,probs.start=probs.start)
# Figure 3, left
strdems <- cbind(1,1,c(18:80),(c(18:80)*1))
exb.strdems <- exp(strdems %*% nes.3cov$coeff)
matplot(c(18:80),(cbind(1,exb.strdems)/(1+rowSums(exb.strdems))),
main="Age and candidate affinity for strong Democrats",
xlab="Age",ylab="Probability of latent class membership",
ylim=c(0,1),type="l",col=1,lwd=3)
text(50,0.3,"Other")
text(50,0.05,"Bush affinity")
text(50,0.7,"Gore affinity")
# Figure 3, right
strreps <- cbind(1,7,c(18:80),(c(18:80)*7))
exb.strreps <- exp(strreps %*% nes.3cov$coeff)
matplot(c(18:80),(cbind(1,exb.strreps)/(1+rowSums(exb.strreps))),
main="Age and candidate affinity for strong Republicans",
xlab="Age",ylab="Probability of latent class membership",
ylim=c(0,1),type="l",col=1,lwd=3)
text(50,0.18,"Other")
text(50,0.9,"Bush affinity")
text(50,0.05,"Gore affinity")
# end of file.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.