tbl_match | R Documentation |
The tbl_match()
validation function, the expect_tbl_match()
expectation
function, and the test_tbl_match()
test function all check whether the
target table's composition matches that of a comparison table. The validation
function can be used directly on a data table or with an agent object
(technically, a ptblank_agent
object) whereas the expectation and test
functions can only be used with a data table. The types of data tables that
can be used include data frames, tibbles, database tables (tbl_dbi
), and
Spark DataFrames (tbl_spark
). As a validation step or as an expectation,
there is a single test unit that hinges on whether the two tables are the
same (after any preconditions
have been applied).
tbl_match(
x,
tbl_compare,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)
expect_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)
test_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)
x |
A pointblank agent or a data table
A data frame, tibble ( |
tbl_compare |
A data table for comparison
A table to compare against the target table. This can either be a table
object, a table-prep formula. This can be a table object such as a data
frame, a tibble, a |
preconditions |
Input table modification prior to validation
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using
a leading |
segments |
Expressions for segmenting the target table
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this. |
actions |
Thresholds and actions for different states
A list containing threshold levels so that the validation step can react
accordingly when exceeding the set levels for different states. This is to
be created with the |
step_id |
Manual setting of the step ID value
One or more optional identifiers for the single or multiple validation
steps generated from calling a validation function. The use of step IDs
serves to distinguish validation steps from each other and provide an
opportunity for supplying a more meaningful label compared to the step
index. By default this is |
label |
Optional label for the validation step
Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information. |
brief |
Brief description for the validation step
A brief is a short, text-based description for the validation step. If
nothing is provided here then an autobrief is generated by the agent,
using the language provided in |
active |
Is the validation step active?
A logical value indicating whether the validation step should be active. If
the validation function is working with an agent, |
object |
A data table for expectations or tests
A data frame, tibble ( |
threshold |
The failure threshold
A simple failure threshold value for use with the expectation ( |
For the validation function, the return value is either a
ptblank_agent
object or a table object (depending on whether an agent
object or a table was passed to x
). The expectation function invisibly
returns its input but, in the context of testing data, the function is
called primarily for its potential side-effects (e.g., signaling failure).
The test function returns a logical value.
The types of data tables that are officially supported are:
data frames (data.frame
) and tibbles (tbl_df
)
Spark DataFrames (tbl_spark
)
the following database tables (tbl_dbi
):
PostgreSQL tables (using the RPostgres::Postgres()
as driver)
MySQL tables (with RMySQL::MySQL()
)
Microsoft SQL Server tables (via odbc)
BigQuery tables (using bigrquery::bigquery()
)
DuckDB tables (through duckdb::duckdb()
)
SQLite (with RSQLite::SQLite()
)
Providing expressions as preconditions
means pointblank will preprocess
the target table during interrogation as a preparatory step. It might happen
that this particular validation requires some operation on the target table
before the comparison takes place. Using preconditions
can be useful at
times since since we can develop a large validation plan with a single target
table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s)
where preconditions
is used. Using dplyr code is suggested here since
the statements can be translated to SQL if necessary (i.e., if the target
table resides in a database). The code is most easily supplied as a one-sided
R formula (using a leading ~
). In the formula representation, the .
serves as the input data table to be transformed. Alternatively, a function
could instead be supplied.
By using the segments
argument, it's possible to define a particular
validation with segments (or row slices) of the target table. An optional
expression or set of expressions that serve to segment the target table by
column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and
the RHS contains the column values to segment on.
As an example of the first type of expression that can be used,
vars(a_column)
will segment the target table in however many unique values
are present in the column called a_column
. This is great if every unique
value in a particular column (like different locations, or different dates)
requires it's own repeating validation.
With a formula, we can be more selective with which column values should be
used for segmentation. Using a_column ~ c("group_1", "group_2")
will
attempt to obtain two segments where one is a slice of data where the value
"group_1"
exists in the column named "a_column"
, and, the other is a
slice where "group_2"
exists in the same column. Each group of rows
resolved from the formula will result in a separate validation step.
Segmentation will always occur after preconditions
(i.e., statements that
mutate the target table), if any, are applied. With this type of one-two
combo, it's possible to generate labels for segmentation using an expression
for preconditions
and refer to those labels in segments
without having to
generate a separate version of the target table.
Often, we will want to specify actions
for the validation. This argument,
present in every validation function, takes a specially-crafted list object
that is best produced by the action_levels()
function. Read that function's
documentation for the lowdown on how to create reactions to above-threshold
failure levels in validation. The basic gist is that you'll want at least a
single threshold level (specified as either the fraction of test units
failed, or, an absolute value), often using the warn_at
argument. Using
action_levels(warn_at = 1)
or action_levels(stop_at = 1)
are good choices
depending on the situation (the first produces a warning, the other
stop()
s).
label
may be a single string or a character vector that matches the number
of expanded steps. label
also supports {glue}
syntax and exposes the
following dynamic variables contextualized to the current step:
"{.step}"
: The validation step name
"{.seg_col}"
: The current segment's column name
"{.seg_val}"
: The current segment's value/group
The glue context also supports ordinary expressions for further flexibility
(e.g., "{toupper(.step)}"
) as long as they return a length-1 string.
Want to describe this validation step in some detail? Keep in mind that this
is only useful if x
is an agent. If that's the case, brief
the agent
with some text that fits. Don't worry if you don't want to do it. The
autobrief protocol is kicked in when brief = NULL
and a simple brief will
then be automatically generated.
A pointblank agent can be written to YAML with yaml_write()
and the
resulting YAML can be used to regenerate an agent (with yaml_read_agent()
)
or interrogate the target table (via yaml_agent_interrogate()
). When
tbl_match()
is represented in YAML (under the top-level steps
key as a
list member), the syntax closely follows the signature of the validation
function. Here is an example of how a complex call of tbl_match()
as a
validation step is expressed in R code and in the corresponding YAML
representation.
R statement:
agent %>% tbl_match( tbl_compare = ~ file_tbl( file = from_github( file = "sj_all_revenue_large.rds", repo = "rich-iannone/intendo", subdir = "data-large" ) ), preconditions = ~ . %>% dplyr::filter(a < 10), segments = b ~ c("group_1", "group_2"), actions = action_levels(warn_at = 0.1, stop_at = 0.2), label = "The `tbl_match()` step.", active = FALSE )
YAML representation:
steps: - tbl_match: tbl_compare: ~ file_tbl( file = from_github( file = "sj_all_revenue_large.rds", repo = "rich-iannone/intendo", subdir = "data-large" ) ) preconditions: ~. %>% dplyr::filter(a < 10) segments: b ~ c("group_1", "group_2") actions: warn_fraction: 0.1 stop_fraction: 0.2 label: The `tbl_match()` step. active: false
In practice, both of these will often be shorter. Arguments with default
values won't be written to YAML when using yaml_write()
(though it is
acceptable to include them with their default when generating the YAML by
other means). It is also possible to preview the transformation of an agent
to YAML without any writing to disk by using the yaml_agent_string()
function.
Create a simple table with three columns and four rows of values.
tbl <- dplyr::tibble( a = c(5, 7, 6, 5), b = c(7, 1, 0, 0), c = c(1, 1, 1, 3) ) tbl #> # A tibble: 4 x 3 #> a b c #> <dbl> <dbl> <dbl> #> 1 5 7 1 #> 2 7 1 1 #> 3 6 0 1 #> 4 5 0 3
Create a second table which is the same as tbl
.
tbl_2 <- dplyr::tibble( a = c(5, 7, 6, 5), b = c(7, 1, 0, 0), c = c(1, 1, 1, 3) ) tbl_2 #> # A tibble: 4 x 3 #> a b c #> <dbl> <dbl> <dbl> #> 1 5 7 1 #> 2 7 1 1 #> 3 6 0 1 #> 4 5 0 3
agent
with validation functions and then interrogate()
Validate that the target table (tbl
) and the comparison table (tbl_2
) are
equivalent in terms of content.
agent <- create_agent(tbl = tbl) %>% tbl_match(tbl_compare = tbl_2) %>% interrogate()
Printing the agent
in the console shows the validation report in the
Viewer. Here is an excerpt of validation report, showing the single entry
that corresponds to the validation step demonstrated here.
agent
)This way of using validation functions acts as a data filter. Data is passed
through but should stop()
if there is a single test unit failing. The
behavior of side effects can be customized with the actions
option.
tbl %>% tbl_match(tbl_compare = tbl_2) #> # A tibble: 4 x 3 #> a b c #> <dbl> <dbl> <dbl> #> 1 5 7 1 #> 2 7 1 1 #> 3 6 0 1 #> 4 5 0 3
With the expect_*()
form, we would typically perform one validation at a
time. This is primarily used in testthat tests.
expect_tbl_match(tbl, tbl_compare = tbl_2)
With the test_*()
form, we should get a single logical value returned to
us.
tbl %>% test_tbl_match(tbl_compare = tbl_2) #> [1] TRUE
2-33
Other validation functions:
col_count_match()
,
col_exists()
,
col_is_character()
,
col_is_date()
,
col_is_factor()
,
col_is_integer()
,
col_is_logical()
,
col_is_numeric()
,
col_is_posix()
,
col_schema_match()
,
col_vals_between()
,
col_vals_decreasing()
,
col_vals_equal()
,
col_vals_expr()
,
col_vals_gt()
,
col_vals_gte()
,
col_vals_in_set()
,
col_vals_increasing()
,
col_vals_lt()
,
col_vals_lte()
,
col_vals_make_set()
,
col_vals_make_subset()
,
col_vals_not_between()
,
col_vals_not_equal()
,
col_vals_not_in_set()
,
col_vals_not_null()
,
col_vals_null()
,
col_vals_regex()
,
col_vals_within_spec()
,
conjointly()
,
row_count_match()
,
rows_complete()
,
rows_distinct()
,
serially()
,
specially()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.