Nothing
#' Tree shape statistics
#'
#' \code{tssInfo} - List that provides information on available tree shape
#' statistics (TSS) from the package 'treebalance'.
#' Most of them are either balance or imbalance indices. The indices are grouped
#' by their families and otherwise sorted alphabetically by their full names.\cr
#' The following information is provided: \cr
#' - short: Abbreviation of the name (plain characters). \cr
#' - simple: Simplified full name (plain characters). \cr
#' - name: Full name (partly expressions as some names use special symbols).\cr
#' - func: Function of the TSS. \cr
#' - type: Either "tss", "bali", or "imbali" expressing what type of tree shape
#' statistic it is. \cr
#' - only_binary: TRUE if TSS is suitable only for binary trees, FALSE if also
#' applicable to arbitrary rooted trees. \cr
#' - safe_n : Integer vector with two entries specifying the range of leaf
#' numbers \code{n} for which the TSS can be (safely) used, without
#' warnings for too few leaves or values reaching Inf for too many
#' leaves.\cr
#' c(4,800), for example means that this TSS should only be applied
#' on trees with 4 to 800 leaves. 'Inf' as the second entry means
#' that there is no specific upper limit, but that the size of the
#' tree itself and the computation time are the limiting factors.\cr
#' - col: Color for the TSS (related TSS have similar colors).
#'
#' @references
#' - M. Fischer, L.Herbst, S. J. Kersting, L. Kühn, and K. Wicke,
#' Tree Balance Indices - A Comprehensive Survey. Springer, 2023.
#' ISBN: 978-3-031-39799-8
#'
#' @import treebalance
#' @export
#' @rdname tssInfo
#'
#' @examples
#' tssInfo$ALD$name
#' tssInfo$ALD$func(genYuleTree(6))
tssInfo <- list(
#-----------------------------------------------------------------------------
ALD = list(short="ALD", simple="Average leaf depth",
name="Average leaf depth",
func=treebalance::avgLeafDepI,
type = "imbali", only_binary = FALSE, safe_n = c(2,Inf),
col = "brown3"),
#-----------------------------------------------------------------------------
AVD = list(short="AVD", simple="Average vertex depth",
name="Average vertex depth",
func=treebalance::avgVertDep,
type = "imbali", only_binary = FALSE, safe_n = c(2,Inf),
col = "brown1"),
#-----------------------------------------------------------------------------
B1I = list(short="B1I", simple="B1 index",
name=expression(paste(italic("B")[1], " index")),
func=treebalance::B1I,
type = "bali", only_binary = FALSE, safe_n = c(2,Inf),
col = "deeppink4"),
#-----------------------------------------------------------------------------
B2I = list(short="B2I", simple="B2 index",
name=expression(paste(italic("B")[2], " index")),
func=treebalance::B2I,
type = "bali", only_binary = FALSE, safe_n = c(2,Inf),
col = "deeppink2"),
#-----------------------------------------------------------------------------
CherI = list(short="CherI", simple="Cherry index", name="Cherry index",
func=treebalance::cherryI,
type = "tss", only_binary = FALSE, safe_n = c(2,Inf),
col = "dimgray"),
#-----------------------------------------------------------------------------
lnCPr = list(short="lnCPr", simple="ln(Colijn-Plazotta rank)",
name="ln(Colijn-Plazotta rank)",
func=function(tree){as.numeric(log(treebalance::colPlaLab(tree)))},
type = "imbali", only_binary = TRUE, safe_n = c(2,13),
col = "lemonchiffon1"),
#-----------------------------------------------------------------------------
Colless = list(short="Colless", simple="Colless index",
name="Colless index",
func=treebalance::collessI,
type = "imbali", only_binary = TRUE, safe_n = c(2,Inf),
col = "darkblue"),
#-----------------------------------------------------------------------------
CollLike = list(short="CollLike",
simple="Colless-like index (f(n)=e^n, D=variance)",
name=expression(paste("Colless-like index (", italic("f"),"(",
italic("n"),")=",italic("e")^italic("n"),
", ",italic("D"),"=variance)")),
func=function(tree){treebalance::collesslikeI(tree,
f.size = "exp",
dissim = "var")},
type = "imbali", only_binary = TRUE, safe_n = c(2,Inf),
col = "deepskyblue4"),
#-----------------------------------------------------------------------------
corrColl = list(short="corrColl", simple="Corrected Colless index",
name="Corrected Colless index",
func=function(tree){treebalance::collessI(tree,
method = "corrected")},
type = "imbali", only_binary = TRUE, safe_n = c(2,Inf),
col = "royalblue1"),
#-----------------------------------------------------------------------------
quadColl = list(short="quadColl", simple="Quadratic Colless index",
name="Quadratic Colless index",
func=function(tree){treebalance::collessI(tree,
method = "quadratic")},
type = "imbali", only_binary = TRUE, safe_n = c(2,Inf),
col = "royalblue3"),
#-----------------------------------------------------------------------------
ewColl = list(short="ewColl", simple="Equal weights Colless index",
name="Equal weights Colless index",
func=treebalance::ewCollessI,
type = "imbali", only_binary = TRUE, safe_n = c(3,Inf),
col = "royalblue4"),
#-----------------------------------------------------------------------------
Furnas = list(short="Furnas", simple="Furnas rank",
name="Furnas rank",
func=function(tree){as.numeric(treebalance::furnasI(tree))},
type = "bali", only_binary = TRUE, safe_n = c(2,792),
col = "lavenderblush3"),
#-----------------------------------------------------------------------------
maxDep = list(short="maxDep", simple="Maximum depth",
name="Maximum depth",
func=treebalance::maxDepth,
type = "imbali", only_binary = FALSE, safe_n = c(2,Inf),
col = "turquoise1"),
#-----------------------------------------------------------------------------
maxWid = list(short="maxWid", simple="Maximum width",
name="Maximum width",
func=treebalance::maxWidth,
type = "bali", only_binary = FALSE, safe_n = c(2,Inf),
col = "aquamarine1"),
#-----------------------------------------------------------------------------
mWomD = list(short="mWomD", simple="Maximum width over maximum depth",
name="Maximum width over maximum depth",
func=treebalance::mWovermD,
type = "bali", only_binary = FALSE, safe_n = c(2,Inf),
col = "aquamarine3"),
#-----------------------------------------------------------------------------
modMaxDelW = list(short="modMaxDelW",
simple="Modified maximum difference in widths",
name="Modified maximum difference in widths",
func=treebalance::maxDelW,
type = "bali", only_binary = FALSE, safe_n = c(2,Inf),
col = "aquamarine4"),
#-----------------------------------------------------------------------------
MeanIp = list(short="MeanIp", simple="Mean I' index",
name=expression(paste("Mean ",italic("I"),
"' index")),
func=function(tree){treebalance::IbasedI(tree, method = "mean",
correction = "prime", logs = F)},
type = "imbali", only_binary = FALSE, safe_n = c(4,Inf),
col = "olivedrab4"),
#-----------------------------------------------------------------------------
RogersJ = list(short="RogersJ", simple="Rogers J",
name=expression(paste("Rogers ",italic("J"))),
func=treebalance::rogersI,
type = "imbali", only_binary = TRUE, safe_n = c(2,Inf),
col = "tan1"),
#-----------------------------------------------------------------------------
RQI = list(short="RQI", simple="Rooted quartet index",
name="Rooted quartet index",
func=treebalance::rQuartetI,
type = "bali", only_binary = FALSE, safe_n = c(2,Inf),
col = "lightpink3"),
#-----------------------------------------------------------------------------
Sackin = list(short="Sackin", simple="Sackin index",
name="Sackin index",
func=treebalance::sackinI,
type = "imbali", only_binary = FALSE, safe_n = c(2,Inf),
col = "darkred"),
#-----------------------------------------------------------------------------
sShape = list(short="sShape", simple="s-shape statistic",
name=expression(paste(hat(italic("s")),
"-shape statistic")),
func=treebalance::sShapeI,
type = "imbali", only_binary = FALSE, safe_n = c(2,Inf),
col = "darkgoldenrod3"),
#-----------------------------------------------------------------------------
SNI = list(short="SNI", simple="Symmetry nodes index",
name="Symmetry nodes index",
func=treebalance::symNodesI,
type = "imbali", only_binary = TRUE, safe_n = c(2,Inf),
col = "tan3"),
#-----------------------------------------------------------------------------
stairs1 = list(short="stairs1", simple="stairs1", name="stairs1",
func=treebalance::stairs1,
type = "imbali", only_binary = TRUE, safe_n = c(2,Inf),
col = "lightblue4"),
#-----------------------------------------------------------------------------
stairs2 = list(short="stairs2", simple="stairs2", name="stairs2",
func=treebalance::stairs2,
type = "bali", only_binary = TRUE, safe_n = c(2,Inf),
col = "lightblue1"),
#-----------------------------------------------------------------------------
TIP = list(short="TIP", simple="Total internal path length",
name="Total internal path length",
func=treebalance::totIntPathLen,
type = "imbali", only_binary = FALSE, safe_n = c(2,Inf),
col = "firebrick3"),
#-----------------------------------------------------------------------------
TPL = list(short="TPL", simple="Total path length",
name="Total path length",
func=treebalance::totPathLen,
type = "imbali", only_binary = FALSE, safe_n = c(2,Inf),
col = "firebrick1"),
#-----------------------------------------------------------------------------
TotCoph = list(short="TotCoph", simple="Total cophenetic index",
name="Total cophenetic index",
func=treebalance::totCophI,
type = "imbali", only_binary = FALSE, safe_n = c(2,Inf),
col = "darkgoldenrod1"),
#-----------------------------------------------------------------------------
TotIp = list(short="TotIp", simple="Total I' index",
name=expression(paste("Total ",italic("I"),
"' index")),
func=function(tree){treebalance::IbasedI(tree, method = "total",
correction = "prime", logs = F)},
type = "imbali", only_binary = FALSE, safe_n = c(4,Inf),
col = "olivedrab2"),
#-----------------------------------------------------------------------------
VLD = list(short="VLD", simple="Variance of leaf depth",
name="Variance of leaf depth",
func=treebalance::varLeafDepI,
type = "imbali", only_binary = FALSE, safe_n = c(2,Inf),
col = "tomato1")
#-----------------------------------------------------------------------------
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.