Nothing
#' Power calculation for unbalanced one-way analysis of variance omnibus F test
#'
#' @description
#' Performs power calculation for an unbalanced (unequal group sizes)
#' one-way ANOVA omnibus F test, which tests for any differences among group means.
#' This function solves for power given other parameters. For balanced data
#' (equal-sized groups), anova1way.F.bal can be used and solves for more
#' parameters.
#'
#'
#'
#'
#' @param nvec A vector of group sample sizes c(n1, n2, ...).
#' @param mvec A vector of group mvec c(mu1, mu2, ...).
#' @param sd The estimated standard deviation within each group.
#' @param Rsq The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
#' @param ncov The number of covariates adjusted for in the model; defaults to 0.
#' @param alpha The significance level or type 1 error rate; defaults to 0.05.
#' @param v Either TRUE for verbose output or FALSE to output computed argument only.
#'
#' @return A list of the arguments (including the computed power).
#' @export
#'
#' @examples
#' anova1way.F.unbal(nvec = c(10, 20, 30), mvec = c(5, 10, 12), sd = 10)
anova1way.F.unbal <- function (nvec = NULL, mvec = NULL, sd = NULL,
Rsq = 0, ncov = 0, alpha = 0.05,
v = FALSE) {
# Check if the arguments are specified correctly
check.param(nvec, "req"); check.param(nvec, "vec")
check.param(mvec, "req"); check.param(mvec, "vec")
check.param(sd, "req"); check.param(sd, "pos")
check.param(Rsq, "req"); check.param(Rsq, "uniti")
check.param(ncov, "req"); check.param(ncov, "int")
check.param(alpha, "req"); check.param(alpha, "unit")
check.param(v, "req"); check.param(v, "bool")
a <- length(mvec)
if (a != length(nvec))
stop("number of sample sizes must equal to the number of groups")
if (any(nvec < 2))
stop("number of observations in each group must be at least 2")
if (Rsq > 0 & ncov == 0)
stop("please specify ncov or set Rsq to 0")
# Get f effect size
f <- es.anova.f(means = mvec, sd = sd, v = F)
# Get marginal mean
mvec <- matrix(mvec)
mu <- mean(mvec)
temp1 <- mvec - mu
mmA <- rowMeans(temp1)
# Get ncp
N <- sum(nvec)
props <- nvec / N
ws <- props %*% mmA
temp <- sapply(X = 1:a, FUN = function(i) nvec[i] * ((mmA[i] - ws) / sd)^2)
Lambda <- sum(temp) / (1 - Rsq)
# Calculate power
df1 <- a - 1
df2 <- N - a - ncov
power <- stats::pf(stats::qf(alpha, df1, df2, lower.tail = FALSE),
df1, df2, Lambda, lower.tail = FALSE)
if (!v) return(power)
# Generate output text
METHOD <- paste0("Unbalanced one-way analysis of ", ifelse(ncov < 1, "", "co"),
"variance\n omnibus F test power calculation")
out <- list(nvec = nvec, mvec = mvec, sd = sd,
`f effect size` = f, ncov = ncov, Rsq = Rsq,
alpha = alpha, power = power,
method = METHOD)
# Print output as a power.htest object
if (ncov < 1) out <- out[!names(out) %in% c("ncov", "Rsq")]
structure(out, class = "power.htest")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.