pred-projection: Predictions from a submodel (after projection)

pred-projectionR Documentation

Predictions from a submodel (after projection)

Description

After the projection of the reference model onto a submodel, the linear predictors (for the original or a new dataset) based on that submodel can be calculated by proj_linpred(). These linear predictors can also be transformed to response scale and averaged across the projected parameter draws. Furthermore, proj_linpred() returns the corresponding log predictive density values if the (original or new) dataset contains response values. The proj_predict() function draws from the predictive distributions (there is one such distribution for each observation from the original or new dataset) of the submodel that the reference model has been projected onto. If the projection has not been performed yet, both functions call project() internally to perform the projection. Both functions can also handle multiple submodels at once (for objects of class vsel or objects returned by a project() call to an object of class vsel; see project()).

Usage

proj_linpred(
  object,
  newdata = NULL,
  offsetnew = NULL,
  weightsnew = NULL,
  filter_nterms = NULL,
  transform = FALSE,
  integrated = FALSE,
  allow_nonconst_wdraws_prj = return_draws_matrix,
  return_draws_matrix = FALSE,
  .seed = NA,
  ...
)

proj_predict(
  object,
  newdata = NULL,
  offsetnew = NULL,
  weightsnew = NULL,
  filter_nterms = NULL,
  nresample_clusters = 1000,
  return_draws_matrix = FALSE,
  .seed = NA,
  resp_oscale = TRUE,
  ...
)

Arguments

object

An object returned by project() or an object that can be passed to argument object of project().

newdata

Passed to argument newdata of the reference model's extract_model_data function (see init_refmodel()). Provides the predictor (and possibly also the response) data for the new (or old) observations. May also be NULL for using the original dataset. If not NULL, any NAs will trigger an error.

offsetnew

Passed to argument orhs of the reference model's extract_model_data function (see init_refmodel()). Used to get the offsets for the new (or old) observations.

weightsnew

Passed to argument wrhs of the reference model's extract_model_data function (see init_refmodel()). Used to get the weights for the new (or old) observations.

filter_nterms

Only applies if object is an object returned by project(). In that case, filter_nterms can be used to filter object for only those elements (submodels) with a number of predictor terms in filter_nterms. Therefore, needs to be a numeric vector or NULL. If NULL, use all submodels.

transform

For proj_linpred() only. A single logical value indicating whether the linear predictor should be transformed to response scale using the inverse-link function (TRUE) or not (FALSE). In case of the latent projection, argument transform is similar in spirit to argument resp_oscale from other functions and affects the scale of both output elements pred and lpd (see sections "Details" and "Value" below).

integrated

For proj_linpred() only. A single logical value indicating whether the output should be averaged across the projected posterior draws (TRUE) or not (FALSE).

allow_nonconst_wdraws_prj

Only relevant for proj_linpred() and only if integrated is FALSE. A single logical value indicating whether to allow projected draws with different (i.e., nonconstant) weights (TRUE) or not (FALSE). If return_draws_matrix is TRUE, allow_nonconst_wdraws_prj is internally set to TRUE as well. CAUTION: Expert use only because if set to TRUE, the weights of the projected draws are stored in attributes wdraws_prj and handling these attributes requires special care (e.g., when subsetting the returned matrices).

return_draws_matrix

A single logical value indicating whether to return an object (in case of proj_predict()) or objects (in case of proj_linpred()) of class draws_matrix (see posterior::draws_matrix()). In case of proj_linpred() and projected draws with nonconstant weights (as well as integrated being FALSE), posterior::weight_draws() is applied internally.

.seed

Pseudorandom number generation (PRNG) seed by which the same results can be obtained again if needed. Passed to argument seed of set.seed(), but can also be NA to not call set.seed() at all. If not NA, then the PRNG state is reset (to the state before calling proj_linpred() or proj_predict()) upon exiting proj_linpred() or proj_predict(). Here, .seed is used for drawing new group-level effects in case of a multilevel submodel (however, not yet in case of a GAMM) and for drawing from the predictive distributions of the submodel(s) in case of proj_predict(). If a clustered projection was performed, then in proj_predict(), .seed is also used for drawing from the set of projected clusters of posterior draws (see argument nresample_clusters). If project() is called internally with seed = NA (or with seed being a lazily evaluated expression that uses the PRNG), then .seed also affects the PRNG usage there.

...

Arguments passed to project() if object is not already an object returned by project().

nresample_clusters

For proj_predict() with clustered projection (and nonconstant weights for the projected draws) only. Number of draws to return from the predictive distributions of the submodel(s). Not to be confused with argument nclusters of project(): nresample_clusters gives the number of draws (with replacement) from the set of clustered posterior draws after projection (with this set being determined by argument nclusters of project()).

resp_oscale

Only relevant for the latent projection. A single logical value indicating whether to draw from the posterior-projection predictive distributions on the original response scale (TRUE) or on latent scale (FALSE).

Details

Currently, proj_predict() ignores observation weights that are not equal to 1. A corresponding warning is thrown if this is the case.

In case of the latent projection and transform = FALSE:

  • Output element pred contains the linear predictors without any modifications that may be due to the original response distribution (e.g., for a brms::cumulative() model, the ordered thresholds are not taken into account).

  • Output element lpd contains the latent log predictive density values, i.e., those corresponding to the latent Gaussian distribution. If newdata is not NULL, this requires the latent response values to be supplied in a column called ⁠.<response_name>⁠ of newdata where ⁠<response_name>⁠ needs to be replaced by the name of the original response variable (if ⁠<response_name>⁠ contained parentheses, these have been stripped off by init_refmodel(); see the left-hand side of ⁠formula(<refmodel>)⁠). For technical reasons, the existence of column ⁠<response_name>⁠ in newdata is another requirement (even though ⁠.<response_name>⁠ is actually used).

Value

In the following, S_{\mathrm{prj}}, N, C_{\mathrm{cat}}, and C_{\mathrm{lat}} from help topic refmodel-init-get are used. (For proj_linpred() with integrated = TRUE, we have S_{\mathrm{prj}} = 1.) Furthermore, let C denote either C_{\mathrm{cat}} (if transform = TRUE) or C_{\mathrm{lat}} (if transform = FALSE). Then, if the prediction is done for one submodel only (i.e., length(nterms) == 1 || !is.null(predictor_terms) in the explicit or implicit call to project(), see argument object):

  • proj_linpred() returns a list with the following elements:

    • Element pred contains the actual predictions, i.e., the linear predictors, possibly transformed to response scale (depending on argument transform).

    • Element lpd is non-NULL only if newdata is NULL or if newdata contains response values in the corresponding column. In that case, it contains the log predictive density values (conditional on each of the projected parameter draws if integrated = FALSE and averaged across the projected parameter draws if integrated = TRUE).

    In case of (i) the traditional projection, (ii) the latent projection with transform = FALSE, or (iii) the latent projection with transform = TRUE and ⁠<refmodel>$family$cats⁠ (where ⁠<refmodel>⁠ is an object resulting from init_refmodel(); see also extend_family()'s argument latent_y_unqs) being NULL, both elements are S_{\mathrm{prj}} \times N matrices (converted to a—possibly weighted—draws_matrix if argument return_draws_matrix is TRUE, see the description of this argument). In case of (i) the augmented-data projection or (ii) the latent projection with transform = TRUE and ⁠<refmodel>$family$cats⁠ being not NULL, pred is an S_{\mathrm{prj}} \times N \times C array (if argument return_draws_matrix is TRUE, this array is "compressed" to an S_{\mathrm{prj}} \times (N \cdot C) matrix—with the columns consisting of C blocks of N rows—and then converted to a—possibly weighted—draws_matrix) and lpd is an S_{\mathrm{prj}} \times N matrix (converted to a—possibly weighted—draws_matrix if argument return_draws_matrix is TRUE). If return_draws_matrix is FALSE and allow_nonconst_wdraws_prj is TRUE and integrated is FALSE and the projected draws have nonconstant weights, then both list elements have the weights of these draws stored in an attribute wdraws_prj. (If return_draws_matrix, allow_nonconst_wdraws_prj, and integrated are all FALSE, then projected draws with nonconstant weights cause an error.)

  • proj_predict() returns an S_{\mathrm{prj}} \times N matrix of predictions where S_{\mathrm{prj}} denotes nresample_clusters in case of clustered projection (or, more generally, in case of projected draws with nonconstant weights). If argument return_draws_matrix is TRUE, the returned matrix is converted to a draws_matrix (see posterior::draws_matrix()). In case of (i) the augmented-data projection or (ii) the latent projection with resp_oscale = TRUE and ⁠<refmodel>$family$cats⁠ being not NULL, the returned matrix (or draws_matrix) has an attribute called cats (the character vector of response categories) and the values of the matrix (or draws_matrix) are the predicted indices of the response categories (these indices refer to the order of the response categories from attribute cats).

If the prediction is done for more than one submodel, the output from above is returned for each submodel, giving a named list with one element for each submodel (the names of this list being the numbers of predictor terms of the submodels when counting the intercept, too).

Examples


# Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

# The `stanreg` fit which will be used as the reference model (with small
# values for `chains` and `iter`, but only for technical reasons in this
# example; this is not recommended in general):
fit <- rstanarm::stan_glm(
  y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
  QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)

# Projection onto an arbitrary combination of predictor terms (with a small
# value for `ndraws`, but only for the sake of speed in this example; this
# is not recommended in general):
prj <- project(fit, predictor_terms = c("X1", "X3", "X5"), ndraws = 21,
               seed = 9182)

# Predictions (at the training points) from the submodel onto which the
# reference model was projected:
prjl <- proj_linpred(prj)
prjp <- proj_predict(prj, .seed = 7364)


projpred documentation built on May 29, 2024, 5:31 a.m.