factor.residuals: R* = R- F F'

factor.residualsR Documentation

R* = R- F F'

Description

The basic factor or principal components model is that a correlation or covariance matrix may be reproduced by the product of a factor loading matrix times its transpose. Find the residuals of the original minus the reproduced matrix. Used by factor.fit, VSS, ICLUST, etc.

Usage

factor.residuals(r, f)

Arguments

r

A correlation matrix

f

A factor model matrix or a list of class loadings

Details

The basic factor equation is _nR_n \approx _{n}F_{kk}F_n'+ U^2. Residuals are just R* = R - F'F. The residuals should be (but in practice probably rarely are) examined to understand the adequacy of the factor analysis. When doing Factor analysis or Principal Components analysis, one usually continues to extract factors/components until the residuals do not differ from those expected from a random matrix.

Value

rstar is the residual correlation matrix.

Author(s)

Maintainer: William Revelle <revelle@northwestern.edu>

See Also

fa, principal, VSS, ICLUST

Examples

fa2 <- fa(Harman74.cor$cov,2,rotate=TRUE)
 fa2resid <- factor.residuals(Harman74.cor$cov,fa2)
 fa2resid[1:4,1:4] #residuals with two factors extracted
 fa4 <- fa(Harman74.cor$cov,4,rotate=TRUE)
 fa4resid <- factor.residuals(Harman74.cor$cov,fa4)
 fa4resid[1:4,1:4] #residuals with 4 factors extracted


psych documentation built on June 27, 2024, 5:07 p.m.