Description Usage Arguments Details Value Author(s) References See Also Examples

A straightforward application of matrix algebra to remove the effect of the variables in the y set from the x set. Input may be either a data matrix or a correlation matrix. Variables in x and y are specified by location.

1 | ```
partial.r(m, x, y)
``` |

`m` |
A data or correlation matrix |

`x` |
The variable numbers associated with the X set. |

`y` |
The variable numbers associated with the Y set |

It is sometimes convenient to partial the effect of a number of variables (e.g., sex, age, education) out of the correlations of another set of variables. This could be done laboriously by finding the residuals of various multiple correlations, and then correlating these residuals. The matrix algebra alternative is to do it directly.
To find the confidence intervals and "significance" of the correlations, use the `corr.p`

function with n = n - s where s is the numer of covariates.

The matrix of partial correlations.

William Revelle

Revelle, W. (in prep) An introduction to psychometric theory with applications in R. To be published by Springer. (working draft available at http://personality-project.org/r/book/

`mat.regress`

for a similar application for regression

1 2 3 4 5 |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.