Nothing
## high-level convenience interface to mob()
mpttree <- function(formula, data, na.action, cluster,
spec, treeid = NULL,
optimargs = list(control = list(reltol = .Machine$double.eps^(1/1.2),
maxit = 1000)),
...)
{
## keep call
cl <- match.call(expand.dots = TRUE)
## use dots for setting up mob_control
control <- mob_control(ytype = "matrix", ...)
## control options for mptfit
mptcontrol <- list(spec = spec, treeid = treeid, optimargs = optimargs)
## call mob
m <- match.call(expand.dots = FALSE)
m$fit <- mptfit
m$control <- control
for(n in names(mptcontrol))
if(!is.null(mptcontrol[[n]])) m[[n]] <- mptcontrol[[n]]
if("..." %in% names(m)) m[["..."]] <- NULL
m[[1L]] <- as.call(quote(partykit::mob))
rval <- eval(m, parent.frame())
## extend class and keep original call
rval$info$call <- cl
class(rval) <- c("mpttree", class(rval))
return(rval)
}
## glue code for calling mptmodel()
mptfit <- function(y, x = NULL, start = NULL, weights = NULL, offset = NULL,
cluster = NULL, ..., estfun = FALSE, object = FALSE)
{
if(!(is.null(x) || NCOL(x) == 0L)) warning("x not used")
if(!is.null(offset)) warning("offset not used")
rval <- mptmodel(y, weights = weights, ..., vcov = object)
rval <- list(
# coefficients = rval$coefficients,
coefficients = coef(rval, logit = FALSE),
objfun = -rval$loglik,
estfun = if(estfun) estfun.mptmodel(rval, logit = TRUE) else NULL,
object = if(object) rval else NULL
)
return(rval)
}
## methods
print.mpttree <- function(x,
title = "MPT tree", objfun = "negative log-likelihood", ...)
{
partykit::print.modelparty(x, title = title, objfun = objfun, ...)
}
## FIX ME
# predict.mpttree <- function(object, newdata = NULL,
# type = c("worth", "rank", "best", "node"), ...)
# {
# ## type of prediction
# type <- match.arg(type)
#
# ## nodes can be handled directly
# if(type == "node") return(partykit::predict.modelparty(object, newdata = newdata, type = "node", ...))
#
# ## get default newdata otherwise
# if(is.null(newdata)) newdata <- model.frame(object)
#
# pred <- switch(type,
# "worth" = worth,
# "rank" = function(obj, ...) rank(-worth(obj)),
# "best" = function(obj, ...) {
# wrth <- worth(obj)
# factor(names(wrth)[which.max(wrth)], levels = names(wrth))
# }
# )
# partykit::predict.modelparty(object, newdata = newdata, type = pred, ...)
# }
plot.mpttree <- function(x, terminal_panel = node_mptplot,
tp_args = list(...), tnex = NULL, drop_terminal = NULL, ...)
{
if(is.null(tnex)) tnex <- if(is.null(terminal_panel)) 1L else 2L
if(is.null(drop_terminal)) drop_terminal <- !is.null(terminal_panel)
partykit::plot.modelparty(x, terminal_panel = terminal_panel,
tp_args = tp_args, tnex = tnex, drop_terminal = drop_terminal, ...)
}
## adapted from coef.modelparty() to allow for coef(..., logit = TRUE)
coef.mpttree <- function(object, node = NULL, drop = TRUE, ...)
{
if (is.null(node))
node <- nodeids(object, terminal = TRUE)
cf <- do.call("rbind",
nodeapply(object, ids = node, FUN = function(n)
coef(info_node(n)$object, ...)))
if (drop)
drop(cf)
else cf
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.