Nothing
## ----eval=FALSE---------------------------------------------------------------
# y ~ x, data = my_data
## ----eval=FALSE---------------------------------------------------------------
# y ~ x|z, data = my_data
## ----eval=FALSE---------------------------------------------------------------
# data |>
# f1(...) |>
# f2(...) |>
# f3(...)
## ----message=FALSE, results='hide'--------------------------------------------
rm(list = ls())
library(dplyr)
library(rstatix)
library(crosstable)
library(pubh)
library(sjlabelled)
## -----------------------------------------------------------------------------
data(Oncho)
Oncho |> head()
## -----------------------------------------------------------------------------
crosstable_options(
total = "row",
percent_pattern="{n} ({p_col})",
percent_digits = 1,
funs = c("Mean (std)" = meansd, "Median [IQR]" = mediqr)
)
## -----------------------------------------------------------------------------
Oncho |>
select(mf, area) |>
mutate(
mf = relevel(mf, ref = "Infected")
) |>
copy_labels(Oncho) |>
crosstable(by = area) |>
ctf()
## -----------------------------------------------------------------------------
Oncho |>
select(- c(id, mfload)) |>
mutate(
mf = relevel(mf, ref = "Infected")
) |>
copy_labels(Oncho) |>
crosstable(by = area) |>
ctf()
## -----------------------------------------------------------------------------
data(Hodgkin)
Hodgkin <- Hodgkin |>
mutate(Ratio = CD4/CD8) |>
var_labels(
Ratio = "CD4+ / CD8+ T-cells ratio"
)
Hodgkin |> head()
## -----------------------------------------------------------------------------
Hodgkin |>
estat(~ CD4)
## -----------------------------------------------------------------------------
Hodgkin |>
estat(~ Ratio|Group)
## -----------------------------------------------------------------------------
Hodgkin |>
mutate(
Group = relevel(Group, ref = "Hodgkin")
) |>
copy_labels(Hodgkin) |>
crosstable(by = Group) |>
ctf()
## -----------------------------------------------------------------------------
var.test(Ratio ~ Group, data = Hodgkin)
## -----------------------------------------------------------------------------
Hodgkin |>
qq_plot(~ Ratio|Group)
## -----------------------------------------------------------------------------
wilcox.test(Ratio ~ Group, data = Hodgkin)
## -----------------------------------------------------------------------------
Hodgkin |>
strip_error(Ratio ~ Group)
## -----------------------------------------------------------------------------
Hodgkin |>
strip_error(Ratio ~ Group) |>
gf_star(x1 = 1, y1 = 4, x2 = 2, y2 = 4.05, y3 = 4.1, "**")
## -----------------------------------------------------------------------------
data(birthwt, package = "MASS")
birthwt <- birthwt |>
mutate(
smoke = factor(smoke, labels = c("Non-smoker", "Smoker")),
Race = factor(race > 1, labels = c("White", "Non-white")),
race = factor(race, labels = c("White", "Afican American", "Other"))
) |>
var_labels(
bwt = 'Birth weight (g)',
smoke = 'Smoking status',
race = 'Race',
)
## -----------------------------------------------------------------------------
birthwt |>
bar_error(bwt ~ smoke)
## -----------------------------------------------------------------------------
birthwt |>
qq_plot(~ bwt|smoke)
## -----------------------------------------------------------------------------
birthwt |>
t_test(bwt ~ smoke, detailed = TRUE) |>
as.data.frame()
## -----------------------------------------------------------------------------
birthwt |>
bar_error(bwt ~ smoke) |>
gf_star(x1 = 1, x2 = 2, y1 = 3400, y2 = 3500, y3 = 3550, "**")
## -----------------------------------------------------------------------------
birthwt |>
bar_error(bwt ~ smoke, fill = ~ Race)
## -----------------------------------------------------------------------------
birthwt |>
bar_error(bwt ~ smoke|Race)
## -----------------------------------------------------------------------------
birthwt |>
strip_error(bwt ~ smoke, pch = ~ Race, col = ~ Race)
## -----------------------------------------------------------------------------
model_bwt <- lm(bwt ~ smoke + race, data = birthwt)
## -----------------------------------------------------------------------------
model_bwt |>
glm_coef(labels = model_labels(model_bwt))
## -----------------------------------------------------------------------------
multiple(model_bwt, ~ race)$df
## -----------------------------------------------------------------------------
multiple(model_bwt, ~ race)$fig_ci |>
gf_labs(x = "Difference in birth weights (g)")
## -----------------------------------------------------------------------------
multiple(model_bwt, ~ race)$fig_pval |>
gf_labs(y = " ")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.