Nothing
## ----include=FALSE------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(qPRAentry)
## -----------------------------------------------------------------------------
data("datatrade_NorthAm")
## -----------------------------------------------------------------------------
extra_total <- datatrade_NorthAm$extra_import
head(extra_total)
## ----message=FALSE, warning=FALSE---------------------------------------------
library(dplyr)
CNTR_pest <- c("CNTR_1", "CNTR_2")
extra_pest <- datatrade_NorthAm$extra_import %>% filter(partner%in%CNTR_pest)
head(extra_pest)
## -----------------------------------------------------------------------------
intra_trade <- datatrade_NorthAm$intra_trade
head(intra_trade)
## -----------------------------------------------------------------------------
internal_production <- datatrade_NorthAm$internal_production
head(internal_production)
## -----------------------------------------------------------------------------
trade_NorthAm <- trade_data(extra_total = extra_total,
extra_pest = extra_pest,
intra_trade = intra_trade,
internal_production = internal_production,
filter_IDs = c("US", "CA"),
filter_period = c("January-March", "April-June"))
## -----------------------------------------------------------------------------
head(trade_NorthAm$total_trade)
## -----------------------------------------------------------------------------
head(trade_NorthAm$intra_trade)
## -----------------------------------------------------------------------------
library(ggplot2)
plot_countries(data = trade_NorthAm$total_trade,
iso_col = "country_IDs",
values_col = "total_available",
title = "Total commodity available",
legend_title = "units") +
xlim(-180,-20) + ylim(0,90)
## -----------------------------------------------------------------------------
ntrade_NorthAm <- ntrade(trade_data = trade_NorthAm)
head(ntrade_NorthAm)
## -----------------------------------------------------------------------------
ntrade_NorthAm_summary <- ntrade(trade_data = trade_NorthAm,
summarise_result = c("mean", "sd",
"quantile(0.025)",
"median",
"quantile(0.975)"))
head(ntrade_NorthAm_summary)
## -----------------------------------------------------------------------------
plot_countries(data = ntrade_NorthAm_summary,
iso_col = "country_IDs",
values_col = "median",
title = "Ntrade median",
legend_title = "units") +
xlim(-180,-20) + ylim(0,90)
## -----------------------------------------------------------------------------
# read data for redistribution and filter subdivisions of US and CA
redist_data <- datatrade_NorthAm$consumption_iso2 %>%
filter(substr(iso_3166_2, 1, 2) %in% c("US", "CA"))
data_redist <- redist_iso(data = ntrade_NorthAm_summary,
iso_col = "country_IDs",
values_col = "median",
redist_data = redist_data,
redist_iso_col = "iso_3166_2",
redist_values_col = "value")
head(data_redist)
## -----------------------------------------------------------------------------
# pathway model (excluding ntrade)
model <- "(1/P1) * ((P2 * 1000) + P3)"
# parameter distributions
parameters_dist <- list(P1 = list(dist = "unif", min = 0, max = 1),
P2 = list(dist = "beta", shape1 = 1, shape2 = 5),
P3 = list(dist = "norm", mean = 0, sd = 1))
res_pathway <- pathway_model(ntrade_data = ntrade_NorthAm_summary,
IDs_col = "country_IDs",
values_col = "median",
expression = model,
parameters = parameters_dist,
niter = 100)
head(res_pathway)
## -----------------------------------------------------------------------------
res_pathway[res_pathway$country_IDs == "Total",]
## -----------------------------------------------------------------------------
plot_countries(data = res_pathway,
iso_col = "country_IDs",
values_col = "Median",
colors = c("#DCE319FF", "#55C667FF", "#33638DFF"),
title = "NPFP median",
legend_title = "NPFP") +
xlim(-180,-20) + ylim(0,90)
## -----------------------------------------------------------------------------
data("datatrade_EU")
## -----------------------------------------------------------------------------
extra_total <- datatrade_EU$extra_import %>% filter(partner=="Extra_Total")
head(extra_total)
## -----------------------------------------------------------------------------
extra_pest <- datatrade_EU$extra_import %>% filter(partner!="Extra_Total")
head(extra_pest)
## -----------------------------------------------------------------------------
intra_trade <- datatrade_EU$intra_trade
head(intra_trade)
## -----------------------------------------------------------------------------
internal_production <- datatrade_EU$internal_production
head(internal_production)
## -----------------------------------------------------------------------------
trade_EU <- trade_data(extra_total = extra_total,
extra_pest = extra_pest,
intra_trade = intra_trade,
internal_production = internal_production)
## -----------------------------------------------------------------------------
head(trade_EU$total_trade)
## -----------------------------------------------------------------------------
head(trade_EU$intra_trade)
## -----------------------------------------------------------------------------
plot_nuts(data = trade_EU$total_trade,
nuts_col = "country_IDs",
values_col = "total_available",
nuts_level = 0,
title = "Total commodity available",
legend_title = "units") +
xlim(-30,50) + ylim(25,70)
## -----------------------------------------------------------------------------
ntrade_EU <- ntrade(trade_data = trade_EU,
summarise_result = c("mean", "sd"))
head(ntrade_EU)
## -----------------------------------------------------------------------------
plot_nuts(data = ntrade_EU,
nuts_col="country_IDs",
values_col="mean",
nuts_level = 0,
title = "Ntrade mean",
legend_title = "units") +
xlim(-40,50) + ylim(25,70)
## ----include=FALSE------------------------------------------------------------
error_msg <- NULL
ntrade_redist_pop <- tryCatch({
suppressMessages(
suppressWarnings(
redist_nuts(data = ntrade_EU,
nuts_col = "country_IDs",
values_col = "mean",
to_nuts = 2,
redist_data = "population",
population_year = c(2020, 2021))
))
}, error = function(e) {
error_msg <<- paste("Error:", e$message)
NULL
})
eval_cond <- ifelse(is.null(ntrade_redist_pop), FALSE, TRUE)
## ----eval=!eval_cond, echo=FALSE----------------------------------------------
# message(error_msg)
## ----eval=FALSE---------------------------------------------------------------
# ntrade_redist_pop <- redist_nuts(data = ntrade_EU,
# nuts_col = "country_IDs",
# values_col = "mean",
# to_nuts = 2,
# redist_data = "population",
# population_year = c(2020, 2021))
## ----eval=eval_cond-----------------------------------------------------------
head(ntrade_redist_pop)
## ----eval=eval_cond-----------------------------------------------------------
plot_nuts(data = ntrade_redist_pop,
nuts_col = "NUTS2",
values_col = "mean",
nuts_level = 2,
title = "Ntrade mean",
legend_title = "units") +
xlim(-40,50) + ylim(25,70)
## -----------------------------------------------------------------------------
# read data for redistribution
nuts1_data <- datatrade_EU$consumption_nuts1
ntrade_redist_df <- redist_nuts(data = ntrade_EU,
nuts_col = "country_IDs",
values_col = "mean",
to_nuts = 1,
redist_data = nuts1_data,
redist_nuts_col = "NUTS_ID",
redist_values_col = "value")
head(ntrade_redist_df)
## -----------------------------------------------------------------------------
plot_nuts(data = ntrade_redist_df,
nuts_level = 1,
nuts_col = "NUTS1",
values_col = "mean",
title = "Ntrade mean",
legend_title = "units") +
xlim(-40,50) + ylim(25,70)
## ----eval=eval_cond-----------------------------------------------------------
# pathway model (excluding ntrade)
model <- "(1/P1) * P2 * P3"
# parameter distributions
parameters_dist <- list(P1 = list(dist = "beta", shape1 = 0.5, shape2 = 1),
P2 = list(dist = "gamma", shape = 1.5, scale = 100),
P3 = list(dist = "lnorm", mean = 5, sd = 2))
res_pathway <- pathway_model(ntrade_data = ntrade_redist_pop,
IDs_col = "NUTS2",
values_col = "mean",
expression = model,
parameters = parameters_dist,
niter = 100)
head(res_pathway)
## ----eval=eval_cond-----------------------------------------------------------
res_pathway[res_pathway$NUTS2 == "Total",]
## ----eval=eval_cond-----------------------------------------------------------
plot_nuts(data = res_pathway,
nuts_level = 2,
nuts_col = "NUTS2",
values_col = "Mean",
colors = c("#DCE319FF", "#55C667FF", "#33638DFF"),
title = "NPFP mean",
legend_title = "NPFP") +
xlim(-40,50) + ylim(25,70)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.