R/I_llkGrads.R

Defines functions .llkGrads

##########
# Internal function which calculates the gradient of each element of the (unpenalized) log-likelihood
# wrt the regression coefficients. 
# INPUT
# - gObj: a gamObject fitted using the elf or elflss family
# - X: the full "lpmatrix" corresponding to both linear predictors
# - jj: a list of indexes indicating the position of the coefficients corresponding to each linear predictor
# - type: set it to "DllkDb" if you want the derivative of the log-lik wrt the regression coeff, or 
#         to "DllkDeta" if you want those wrt the linear predictor.
# 
# OUTPUT
# - an n by p matrix where the i-th columns is the gradient of the i-th log-likelihood component
#
.llkGrads <- function(gObj, X, jj, type = "DllkDb") {
  
  type <- match.arg(type, c("DllkDb", "DllkDeta"))
  
  y <- gObj$y
  beta <- coef( gObj )
  fam <- gObj$family
  wt <- gObj$prior.weights
  offset <- gObj$offset
  
  n <- length( y )
  p <- length( beta )
  
  tau <- fam$getQu( )
  theta <- fam$getTheta( )
  co <- fam$getCo( )
  
  if( !is.null(jj) ) { # GAMLSS
    
    if( !is.null(offset) ){ offset[[3]] <- 0 }
    
    eta <- X[ , jj[[1]], drop=FALSE] %*% beta[jj[[1]]]
    if( !is.null(offset[[1]]) ){ eta <- eta + offset[[1]] }
    mu <- fam$linfo[[1]]$linkinv( eta )
    
    eta1 <- X[ , jj[[2]], drop=FALSE] %*% beta[jj[[2]]] + theta
    if( !is.null(offset[[2]]) ){ eta1 <- eta1 + offset[[2]] }
    sig <-  fam$linfo[[2]]$linkinv( eta1 ) 
    lam <- co / sig
    
    # Chain rule: DlogBeta/Dsig = DlogBeta/Dlam * Dlam/Dsig; 
    dBdL <- (1-tau) * digamma(lam*(1-tau)) + tau * digamma(lam*tau) - digamma(lam)  
    dLdS <- - co / sig^2
    dBdS <- dLdS * dBdL
    
    zc <- (y - mu) / co
    lpxp <- log1pexp( zc )
    gLog <- (tau-1) * (y-mu) + co * lpxp
    pl <- plogis(y, mu, co)
    
    # [1] Derivatives of llk wrt parameters
    l1 <- matrix(0, n, 2)
    l1[ , 1] <- wt * (pl - 1 + tau) / sig
    l1[ , 2] <- wt * ( gLog/sig^2 - dBdS ) 
    
    # Derivative of link function 
    ig1 <- cbind(fam$linfo[[1]]$mu.eta(eta), fam$linfo[[2]]$mu.eta(eta1))
    
    # [2] Transform llk derivatives wrt mu to derivatives wrt linear predictor (eta)
    l1 <- l1 * ig1
    if( type == "DllkDeta" ){ return( list("l1" = as.matrix(l1), "sig" = sig) ) }
      
    # [3] Transform into derivatives wrt regression coefficients
    # The i-th column of 'grads' is the score of the i-th likelihood component 
    grads <- matrix(0, n, p)
    for (i in 1:length(jj)) {
      grads[ , jj[[i]]] <- grads[ , jj[[i]]] + l1[ , i] * X[ , jj[[i]],  drop = FALSE]
    }
    
  } else { # Extended GAM
    
    sig <- exp( theta )
    lam <- co / sig
    
    if( is.null(offset) ){
     offset <- numeric( nrow(X) )  
    }
    
    eta <- X %*% beta + offset
    mu <- fam$linkinv( eta )

    z <- (y - mu) / sig
    
    pl <- plogis(y, mu, lam * sig)
    
    # [1] Derivatives of llk wrt parameters
    l1 <- numeric( n )
    l1 <- wt * (pl - 1 + tau) / sig
    
    # Derivative of link function 
    ig1 <- fam$mu.eta(eta)
    
    # [2] Transform llk derivatives wrt mu to derivatives wrt linear predictor (eta)
    l1 <- l1 * ig1
    if( type == "DllkDeta" ){ return(list("l1" = as.matrix(l1), "sig" = sig)) }
    
    # [3] Transform into derivatives wrt regression coefficients
    # The i-th column of 'grads' is the score of the i-th likelihood component 
    grads <- drop(l1) * X
    
  }
  
  return(grads)
  
}

Try the qgam package in your browser

Any scripts or data that you put into this service are public.

qgam documentation built on Nov. 23, 2021, 1:07 a.m.