R/I_sandwichLoss.R

Defines functions .sandwichLoss

##########
# Internal function which calculated calibration loss function based on the sandwich estimator
# wrt the regression coefficients. 
# INPUT
# - mFit: a gamObject fitted using the elflss family
# - X: the submatrix of XFull corresponding to the first linear predictor (X = XFull[ , lpi[[2]]]).
#      Notice that X = XFull in the extended GAM case.
# - XFull: the full "lpmatrix" corresponding to both linear predictors
# - sdev: the posterior standard deviation of the first linear predicto 
# OUTPUT
# - a scalar indicating the loss
#
.sandwichLoss <- function(mFit, X, XFull, sdev, repar, alpha = NULL, VSim = NULL){
  
  lpi <- attr(X, "lpi")
  
  # Posterior variance of fitted quantile (mu) 
  varOFI <- sdev ^ 2

  if( !is.null(lpi) ){ # GAMLSS version OR ...
    
    if( is.null(mFit$rp) ) { stop("mFit$rp is NULL, but a re-parametrization list is needed")  }
    
    mFit$Sl <- repar # Add reparametrization list

    # Extract observed Fisher information and invert the transformations
    OFI <- - mFit$lbb
    OFI <- Sl.repara(mFit$rp, OFI, inverse = TRUE)
    OFI <- Sl.initial.repara(mFit$Sl, OFI, inverse = TRUE, cov = FALSE)
    
    # Extract penalty matrix and invert transformations
    P <- mFit$St
    P <- Sl.repara(mFit$rp, P, inverse = TRUE)
    P <- Sl.initial.repara(mFit$Sl, P, inverse = TRUE, cov = FALSE)
    
    # Calculate variance of the score
    grad <- .llkGrads(gObj = mFit, X = XFull, jj = lpi)

  } else { # Extended GAM version 
    
    # Observed Fisher information and penalty matrix
    woW <- mFit$working.weights # NB: these can be negative
    OFI <- crossprod(sign(woW)*sqrt(abs(woW))*X, sqrt(abs(woW))*X)  
    P <- .getPenMatrix(q = ncol(X), UrS = repar$UrS, sp = log(mFit$sp), Mp = repar$Mp, U1 = repar$U1)
    
  }
  
  # Calculate variance of the score
  grad <- .llkGrads(gObj = mFit, X = XFull, jj = lpi)
  
  # Covariance matrix of the score
  V <- cov( grad ) 
  if( !is.null(alpha) ){
    V <- alpha * V + (1-alpha) * VSim
  }
  V <- V * nrow(X) 
  
  # Compute eigen-decomposition of V, get its rank and produce pseudo-inverse
  eV <- eigen( V )
  rv <- sum( eV$values > eV$values[1] * .Machine$double.eps )
  Q <- t( t(eV$vectors[ , 1:rv]) / sqrt(eV$values[1:rv]) ) 
  
  # Inverse 'Sandwich' posterior covariance
  iS <- (OFI %*% Q) %*% crossprod(Q, OFI) + P  
  
  # Computed the Cholesky factor relevant to mu
  if( !is.null(lpi) ){
    c22 <- chol( iS[lpi[[2]], lpi[[2]]] )
    A <- forwardsolve(t(c22), iS[lpi[[2]], lpi[[1]]])
    C <- chol( iS[lpi[[1]], lpi[[1]]] - crossprod(A) )
  } else {
    C <- chol( iS )
  }
  
  # Posterior variance using sandwich: var(mu) = diag( X %*% iS^-1 %*% t(X) )
  varSand <- rowSums(t(backsolve(C, forwardsolve(t(C), t(X)))) * X)

  bias <- numeric( nrow(X) ) * 0
  
  # Excluded observ where the variance is 0 (probably because all corresponding covariate values are 0)
  not0 <- which( !(varOFI == 0 & varSand == 0) )
  
  # Average distance KL(sand_i, post_i) on non-zeros
  outLoss <- mean( sqrt(varSand/varOFI + bias^2/varOFI + log(varOFI/varSand))[not0] )
  
  return( outLoss )
  
}

Try the qgam package in your browser

Any scripts or data that you put into this service are public.

qgam documentation built on Nov. 23, 2021, 1:07 a.m.