CPCAT.bMDD: CPCAT bootstrap MDD (bMDD)

View source: R/CPCATbMDD.R

CPCAT.bMDDR Documentation

CPCAT bootstrap MDD (bMDD)

Description

The basic idea of the calculation of bootstrap MDD (bMDD) using the CPCAT approach is to shift the lambda parameter of Poisson distribution until there is a certain proportion of results significantly different from the control.

Usage

CPCAT.bMDD(
  groups,
  counts,
  control.name = NULL,
  alpha = 0.05,
  shift.step = -0.25,
  bootstrap.runs = 200,
  power = 0.8,
  max.iterations = 1000,
  use.fixed.random.seed = NULL,
  CPCAT.bootstrap.runs = 200,
  show.progress = TRUE,
  show.results = TRUE
)

Arguments

groups

Group vector

counts

Vector with count data

control.name

Character string with control group name (optional)

alpha

Significance level

shift.step

Step of shift (negative as a reduction is assumed)

bootstrap.runs

Number of bootstrap runs

power

Proportion of bootstrap.runs that return significant differences

max.iterations

Max. number of iterations to not get stuck in the while loop

use.fixed.random.seed

Use fixed seed, e.g. 123, for reproducible results. If NULL no seed is set.

CPCAT.bootstrap.runs

Bootstrap runs within CPCAT method

show.progress

Show progress for each shift of lambda

show.results

Show results

Value

Data frame with results from bMDD analysis

Examples

Daphnia.counts	# example data provided alongside the package

# Test CPCAT bootstrap MDD
CPCAT.bMDD(groups = Daphnia.counts$Concentration,
		  counts = Daphnia.counts$Number_Young,
		  control.name = NULL,
		  alpha = 0.05,
		  shift.step = -1,		# Caution: big step size for testing
		  bootstrap.runs = 5,	# Caution: low number of bootstrap runs for testing
		  power = 0.8,
		  max.iterations = 1000,
		  use.fixed.random.seed = 123,  #fixed seed for reproducible results
		  CPCAT.bootstrap.runs = 10,
		  show.progress = TRUE,
		  show.results = TRUE)


qountstat documentation built on April 4, 2025, 12:18 a.m.