CPCAT.power: CPCAT power

View source: R/CPCATPower.R

CPCAT.powerR Documentation

CPCAT power

Description

The basic idea of CPCAT power calculations is to do parametric bootstrapping for each dose/concentration group and to evaluate the proportion of results significantly different from the control.

Usage

CPCAT.power(
  groups,
  counts,
  control.name = NULL,
  alpha = 0.05,
  bootstrap.runs = 200,
  use.fixed.random.seed = NULL,
  CPCAT.bootstrap.runs = 200,
  show.progress = TRUE,
  show.results = TRUE
)

Arguments

groups

Group vector

counts

Vector with count data

control.name

Character string with control group name (optional)

alpha

Significance level

bootstrap.runs

Number of bootstrap runs

use.fixed.random.seed

Use fixed seed, e.g. 123, for reproducible results. If NULL no seed is set.

CPCAT.bootstrap.runs

Bootstrap runs within CPCAT method

show.progress

Show progress for each shift of lambda

show.results

Show results

Value

Data frame with results from power analysis

Examples

Daphnia.counts	# example data provided alongside the package

# Test CPCAT power
CPCAT.power(groups = Daphnia.counts$Concentration,
		   counts = Daphnia.counts$Number_Young,
		   control.name = NULL,
		   alpha = 0.05,
		   bootstrap.runs = 10,		# Caution: low number of bootstrap runs for testing
		   use.fixed.random.seed = 123,  #fixed seed for reproducible results
		   CPCAT.bootstrap.runs = 10,# Caution: low number of bootstrap runs for testing
		   show.progress = TRUE,
		   show.results = TRUE)

qountstat documentation built on April 4, 2025, 12:18 a.m.