Multi.group.test.power: Multi-group test power

View source: R/MultiGroupTestPower.R

Multi.group.test.powerR Documentation

Multi-group test power

Description

Idea: Do parametric bootstrapping for each group and evaluate the proportion of significant results.

Usage

Multi.group.test.power(
  groups,
  counts,
  control.name = NULL,
  alpha = 0.05,
  bootstrap.runs = 200,
  use.fixed.random.seed = NULL,
  CPCAT.bootstrap.runs = 200,
  Dunnett.GLM.zero.treatment.action = "log(x+1)",
  show.progress = TRUE,
  show.results = TRUE,
  test = "CPCAT"
)

Arguments

groups

Group vector

counts

Vector with count data

control.name

Character string with control group name (optional)

alpha

Significance level

bootstrap.runs

Number of bootstrap runs

use.fixed.random.seed

Use fixed seed, e.g. 123, for reproducible results. If NULL no seed is set.

CPCAT.bootstrap.runs

Bootstrap runs within CPCAT method

Dunnett.GLM.zero.treatment.action

GLM.Dunnett method to be used for treatments only containing zeros

show.progress

Show progress for each shift of lambda

show.results

Show results

test

Either "CPCAT" or "GLM.Dunnett"

Value

Data frame with results from power analysis


qountstat documentation built on April 4, 2025, 12:18 a.m.