Dunnett.GLM.bMDD: Dunnett.GLM bootstrap MDD (bMDD)

View source: R/DunnettGLMbMDD.R

Dunnett.GLM.bMDDR Documentation

Dunnett.GLM bootstrap MDD (bMDD)

Description

The basic idea of the calculation of bootstrap MDD (bMDD) using the Dunnett.GLM approach is to shift the lambda parameter of Poisson distribution until there is a certain proportion of results significantly different from the control.

Usage

Dunnett.GLM.bMDD(
  groups,
  counts,
  control.name = NULL,
  alpha = 0.05,
  shift.step = -0.25,
  bootstrap.runs = 200,
  power = 0.8,
  max.iterations = 1000,
  use.fixed.random.seed = NULL,
  Dunnett.GLM.zero.treatment.action = "log(x+1)",
  show.progress = TRUE,
  show.results = TRUE
)

Arguments

groups

Group vector

counts

Vector with count data

control.name

Character string with control group name (optional)

alpha

Significance level

shift.step

Step of shift (negative as a reduction is assumed)

bootstrap.runs

Number of bootstrap runs

power

Proportion of bootstrap.runs that return significant differences

max.iterations

Max. number of iterations to not get stuck in the while loop

use.fixed.random.seed

Use fixed seed, e.g. 123, for reproducible results. If NULL no seed is set.

Dunnett.GLM.zero.treatment.action

Dunnett.GLM method to be used for treatments only containing zeros

show.progress

Show progress for each shift of lambda

show.results

Show results

Value

Data frame with results from bMDD analysis

Examples

Daphnia.counts	# example data provided alongside the package

# Test Dunnett.GLM bootstrap MDD
Dunnett.GLM.bMDD(groups = Daphnia.counts$Concentration,
	counts = Daphnia.counts$Number_Young,
	control.name = NULL,
	alpha = 0.05,
	shift.step = -1,		# Caution: big step size for testing
	bootstrap.runs = 5,	# Caution: low number of bootstrap runs for testing
	power = 0.8,
	max.iterations = 1000,
	use.fixed.random.seed = 123,  #fixed seed for reproducible results
	Dunnett.GLM.zero.treatment.action = "log(x+1)",
	show.progress = TRUE,
	show.results = TRUE)

qountstat documentation built on April 4, 2025, 12:18 a.m.