Multi.group.test.bMDD: Multi-group test bMDD

View source: R/MultiGroupTestBMDD.R

Multi.group.test.bMDDR Documentation

Multi-group test bMDD

Description

Idea: shift lambda of Poisson distribution until there is a certain proportion of significant results

Usage

Multi.group.test.bMDD(
  groups,
  counts,
  control.name = NULL,
  alpha = 0.05,
  shift.step = -0.25,
  bootstrap.runs = 200,
  power = 0.8,
  max.iterations = 1000,
  use.fixed.random.seed = NULL,
  CPCAT.bootstrap.runs = 200,
  Dunnett.GLM.zero.treatment.action = "log(x+1)",
  show.progress = TRUE,
  show.results = TRUE,
  get.effect.and.power = FALSE,
  use.CMP.distribution = FALSE,
  CMP.dispersion.factor = 1,
  test = "CPCAT"
)

Arguments

groups

Group vector

counts

Vector with count data

control.name

Character string with control group name (optional)

alpha

Significance level

shift.step

Step of shift (negative as a reduction is assumed)

bootstrap.runs

Number of bootstrap runs

power

Proportion of bootstrap.runs that return significant differences

max.iterations

Max. number of iterations to not get stuck in the while loop

use.fixed.random.seed

Use fixed seed, e.g. 123, for reproducible results. If NULL no seed is set.

CPCAT.bootstrap.runs

Bootstrap runs within CPCAT method

Dunnett.GLM.zero.treatment.action

Dunnett.GLM method to be used for treatments only containing zeros

show.progress

Show progress for each shift of lambda

show.results

Show results

get.effect.and.power

Return effect size (percent of control) and power for each step (only for last treatment)

use.CMP.distribution

Use Conway-Maxwell-Poisson distribution for sampling

CMP.dispersion.factor

Dispersion parameter phi has to be sqrt(factor) to scale the variance by this factor

test

Either "CPCAT" or "GLM.Dunnett"

Value

Data frame with results from bMDD analysis


qountstat documentation built on April 4, 2025, 12:18 a.m.