Nothing
#' @title Dunnett.GLM bootstrap MDD (bMDD)
#' @description The basic idea of the calculation of bootstrap MDD (bMDD) using the Dunnett.GLM approach
#' is to shift the lambda parameter of Poisson distribution until there is a certain proportion of
#' results significantly different from the control.
#' @param groups Group vector
#' @param counts Vector with count data
#' @param control.name Character string with control group name (optional)
#' @param alpha Significance level
#' @param shift.step Step of shift (negative as a reduction is assumed)
#' @param bootstrap.runs Number of bootstrap runs
#' @param power Proportion of bootstrap.runs that return significant differences
#' @param max.iterations Max. number of iterations to not get stuck in the while loop
#' @param use.fixed.random.seed Use fixed seed, e.g. 123, for reproducible results. If NULL no seed is set.
#' @param Dunnett.GLM.zero.treatment.action Dunnett.GLM method to be used for treatments only containing zeros
#' @param show.progress Show progress for each shift of lambda
#' @param show.results Show results
#' @return Data frame with results from bMDD analysis
#' @examples
#' Daphnia.counts # example data provided alongside the package
#'
#' # Test Dunnett.GLM bootstrap MDD
#' Dunnett.GLM.bMDD(groups = Daphnia.counts$Concentration,
#' counts = Daphnia.counts$Number_Young,
#' control.name = NULL,
#' alpha = 0.05,
#' shift.step = -1, # Caution: big step size for testing
#' bootstrap.runs = 5, # Caution: low number of bootstrap runs for testing
#' power = 0.8,
#' max.iterations = 1000,
#' use.fixed.random.seed = 123, #fixed seed for reproducible results
#' Dunnett.GLM.zero.treatment.action = "log(x+1)",
#' show.progress = TRUE,
#' show.results = TRUE)
#' @export
Dunnett.GLM.bMDD = function(groups, # group vector
counts, # vector with count data
control.name = NULL, # character string with control group name
alpha = 0.05, # significance level
shift.step = -0.25, # step of shift (negative as a reduction is assumed)
bootstrap.runs = 200, # number of bootstrap runs (draw Poisson data n times)
power = 0.8, # proportion of bootstrap.runs that return significant differences
max.iterations = 1000, # max number of iterations to not get stuck in the while loop
use.fixed.random.seed = NULL, # fix seed, e.g. 123, for random numbers if desired (enables to reproduce results)
Dunnett.GLM.zero.treatment.action = "log(x+1)", # Dunnett.GLM method to be used for treatments only containing zeros
show.progress = TRUE, # show progress for each shift of lambda
show.results = TRUE) { # show results
Multi.group.test.bMDD(groups = groups,
counts = counts,
control.name = control.name,
alpha = alpha,
shift.step = shift.step,
bootstrap.runs = bootstrap.runs,
power = power,
max.iterations = max.iterations,
use.fixed.random.seed = use.fixed.random.seed,
Dunnett.GLM.zero.treatment.action = Dunnett.GLM.zero.treatment.action,
show.progress = show.progress,
show.results = show.results,
test = "GLM.Dunnett")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.