Nothing
library(qpmadr)
library(tinytest)
n = 6
k = 3
set.seed(42)
Q = crossprod(matrix(rnorm(n*n), n))
invQchol = solve(chol(Q))
Q0 = Q
Q0[1,1] = 0
A = matrix(5, k, n)
Alb = c(1, numeric(k-1))
l = rep_len(1, n)
expect_error(solveqp(Q))
expect_error(solveqp(Q, A=A))
expect_true(solveqp(Q, lb = l)$status == 0)
expect_true(solveqp(Q0, lb = l)$status == -1)
expect_true(all(is.finite(solveqp(Q, A=A, Alb=Alb)$solution)))
resLlt = solveqp(Q, A=A, Alb=Alb)
resQpm = solveqp(t(chol(Q)), A=A, Alb=Alb, pars = list(factorizationType="CHOLESKY"))
resChol = solveqp(invQchol, A=A, Alb=Alb, pars = list(factorizationType="INV_CHOLESKY"))
expect_equal(resLlt, resQpm)
expect_equal(resLlt, resChol)
resFull = solveqp(Q, A=A, Alb=Alb, pars=qpmadr::qpmadParameters(withLagrMult = TRUE, returnInvCholFac = TRUE))
expect_inherits(resFull$lagrangeMult, "data.frame")
expect_equal(resFull$invHessian[upper.tri(Q)], invQchol[upper.tri(Q)])
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.