R/textplot_influence.R

Defines functions textplot_influence.summary.influence.predict.textmodel_affinity textplot_influence.influence.predict.textmodel_affinity textplot_influence.default textplot_influence

Documented in textplot_influence

#' Influence plot for text scaling models
#'
#' Plot the results of a fitted scaling model, from (e.g.) a predicted
#' [textmodel_affinity] model.
#' @param x the object output from `influence()` run on the
#'   fitted or predicted scaling model object to be plotted
#' @param n the number of features whose influence will be plotted
#' @param ... additional arguments passed to [plot()]
#' @returns Creates a base R plot of feature influences of the median influence
#'   by the log10 median rate of the feature, and invisibly returns the elements
#'   from the call to [plot()].
#' @seealso [textmodel_affinity()]
#' @importFrom graphics plot
#' @export
#' @author Patrick Perry and Kenneth Benoit
#' @seealso [influence.predict.textmodel_affinity()]
#' @keywords textplot internal
#' @examples
#' tmod <- textmodel_affinity(quanteda::data_dfm_lbgexample, y = c("L", NA, NA, NA, "R", NA))
#' pred <- predict(tmod)
#' textplot_influence(influence(pred))
textplot_influence <- function(x, n = 30, ...) {
    UseMethod("textplot_influence")
}

#' @export
textplot_influence.default <- function(x, n = 30, ...) {
    stop(check_class(class(x), "textplot_influence"))
}

#' @export
#' @method textplot_influence influence.predict.textmodel_affinity
textplot_influence.influence.predict.textmodel_affinity <- function(x, n = 30, ...) {
    ans <- summary(x, ...)
    textplot_influence(ans, n, ...)
}

#' @importFrom graphics legend text points
#' @method textplot_influence summary.influence.predict.textmodel_affinity
#' @export
textplot_influence.summary.influence.predict.textmodel_affinity <- function(x, n = 30, ...) {
    word <- x$word[x$support]
    rate <- x$rate[x$support]
    influence <- x$median[x$support]
    direction <- x$direction[x$support]
    imbalance <- influence / rate

    x <- log10(rate)
    y <- 100 * influence
    col <- as.integer(direction)
    plot(x, y, type = "n", xlab=expression(Log[10]("Median Rate")),
         ylab=expression("Median Influence" %*% 100))

    if (!is.null(n) && !is.na(n)) {
        n <- min(n, nrow(x))
        subset <- rank(-influence, ties.method="first")  <= n
    } else {
        subset <- rep(TRUE, length(word))
    }
    points(x[!subset], y[!subset], cex=0.5, col=col[!subset])
    text(x[subset], y[subset], word[subset], cex=0.75, col=col[subset])

    levels <- levels(direction)
    legend("topleft", legend = levels, fill = seq_along(levels), inset=0.05)
}

Try the quanteda.textmodels package in your browser

Any scripts or data that you put into this service are public.

quanteda.textmodels documentation built on Sept. 11, 2024, 8:19 p.m.