Nothing
library("quanteda")
test_that("textmodel_affinity works as expected", {
fitted <- textmodel_affinity(data_dfm_lbgexample,
y = c("L", NA, NA, NA, "R", NA))
predicted <- predict(fitted)
expect_gte(coef(predicted)["V1", "L"], 0.95)
expect_equal(rownames(coef(predicted)),
c("R1", "R2", "R3", "R4", "R5", "V1"))
})
test_that("textmodel_affinity works for tolower = TRUE dfm objects (#1338)", {
toks <- tokens(c("A", "B", "C", "a"))
dfm1 <- dfm(toks, tolower = TRUE)
dfm2 <- dfm(toks, tolower = FALSE)
expect_output(
print(textmodel_affinity(dfm1, y = c("one", "two", NA, NA))),
"Training documents per class:one: 1, two: 1; total training features: 3"
)
expect_output(
print(textmodel_affinity(dfm2, y = c("one", "two", NA, NA))),
"Training documents per class:one: 1, two: 1; total training features: 4"
)
})
test_that("raises error when dfm is empty (#1419)", {
mx <- dfm_trim(data_dfm_lbgexample, 1000)
expect_error(textmodel_affinity(mx, y = c(-1, NA, NA, NA, 1, NA)),
quanteda.textmodels:::message_error("dfm_empty"))
})
pdf(file = tempfile(".pdf"), width = 10, height = 10)
test_that("test textmodel_affinity plots", {
af <- textmodel_affinity(data_dfm_lbgexample, y = c("L", NA, NA, NA, "R", NA))
afpred <- predict(af)
expect_silent(textplot_influence(influence(afpred)))
expect_silent(textplot_influence(summary(influence(afpred))))
})
dev.off()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.