Nothing
library("quanteda")
test_that("the svmlin model works", {
## Example from 13.1 of _An Introduction to Information Retrieval_
corp <- corpus(c(d1 = "Chinese Beijing Chinese",
d2 = "Chinese Chinese Shanghai",
d3 = "Chinese Macao",
d4 = "Tokyo Japan Chinese",
d5 = "Chinese Chinese Chinese Tokyo Japan"),
docvars = data.frame(train = factor(c("Y", "Y", "Y", "N", NA))))
dfmat <- dfm(tokens(corp), tolower = FALSE) %>%
dfm_tfidf()
tmod <- textmodel_svmlin(dfmat, y = docvars(dfmat, "train"))
expect_output(
print(tmod),
"Call:"
)
expect_equal(
head(coef(tmod), 3),
c(intercept = 0.0, Chinese = 0.330, Beijing = 0.330),
tol = .001
)
tmod2 <- textmodel_svmlin(dfmat, y = docvars(dfmat, "train"), intercept = FALSE)
expect_identical(
predict(tmod2),
c(d1 = "Y", d2 = "Y", d3 = "Y", d4 = "N", d5 = "N")
)
expect_equal(names(summary(tmod)), c("call", "estimated.feature.scores"))
expect_identical(
predict(tmod),
c(d1 = "Y", d2 = "Y", d3 = "N", d4 = "N", d5 = "N")
)
expect_error(
textmodel_svmlin(dfmat, y = c("Y", "N", "Maybe", NA, NA)),
"y must contain two values only"
)
})
test_that("textmodel_svm/svmlin() work with weighted dfm", {
dfmat <- dfm_tfidf(data_dfm_lbgexample)
expect_silent(
tmod <- textmodel_svm(dfmat, y = c("N", "N", NA, "Y", "Y", NA))
)
expect_silent(
predict(tmod)
)
expect_silent(
tmod <- textmodel_svmlin(dfmat, y = c("N", "N", NA, "Y", "Y", NA))
)
expect_silent(
predict(tmod)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.