Nothing
#' Add targets for CO2 emissions per unit production at the portfolio level,
#' using the SDA approach
#'
#' This function calculates targets of CO2 emissions per unit production at the
#' portfolio-level, otherwise referred to as "emissions factors". It uses the
#' [sectoral-decarbonization approach
#' (SDA)](https://rmi-pacta.github.io/r2dii.analysis/articles/sda-target.html)
#' to calculate these targets.
#'
#' @template ignores-existing-groups
#'
#' @param data A dataframe like the output of
#' `r2dii.match::prioritize()`.
#' @param abcd An asset-level data frame like [r2dii.data::abcd_demo].
#' @param co2_intensity_scenario A scenario data frame like
#' [r2dii.data::co2_intensity_scenario_demo].
#' @param region_isos A data frame like [r2dii.data::region_isos] (default).
#' @param use_credit_limit Logical vector of length 1. `FALSE` defaults to using
#' the column `loan_size_outstanding`. Set to `TRUE` to instead use the column
#' `loan_size_credit_limit`.
#' @param by_company Logical vector of length 1. `FALSE` defaults to outputting
#' `weighted_production_value` at the portfolio-level. Set to `TRUE` to output
#' `weighted_production_value` at the company-level.
#'
#' @return A tibble including the summarized columns `emission_factor_metric` and
#' `emission_factor_value`. If `by_company = TRUE`, the output will also have
#' the column `name_abcd`.
#' @param ald `r lifecycle::badge('superseded')` `ald` has been superseded by
#' `abcd`.
#'
#' @export
#'
#' @family functions to calculate scenario targets
#'
#' @examples
#' installed <- requireNamespace("r2dii.match", quietly = TRUE) &&
#' requireNamespace("r2dii.data", quietly = TRUE) &&
#' packageVersion("r2dii.match") >= "0.1.0"
#'
#' if (installed) {
#' library(r2dii.match)
#' library(r2dii.data)
#'
#' loanbook <- head(loanbook_demo, 150)
#' abcd <- head(abcd_demo, 100)
#'
#' matched <- loanbook %>%
#' match_name(abcd) %>%
#' prioritize()
#'
#' # Calculate targets at portfolio level
#' matched %>%
#' target_sda(
#' abcd = abcd,
#' co2_intensity_scenario = co2_intensity_scenario_demo,
#' region_isos = region_isos_demo
#' )
#'
#' # Calculate targets at company level
#' matched %>%
#' target_sda(
#' abcd = abcd,
#' co2_intensity_scenario = co2_intensity_scenario_demo,
#' region_isos = region_isos_demo,
#' by_company = TRUE
#' )
#' }
#'
target_sda <- function(data,
abcd,
co2_intensity_scenario,
use_credit_limit = FALSE,
by_company = FALSE,
region_isos = r2dii.data::region_isos,
ald = deprecated()) {
stopifnot(
is.data.frame(data),
is.data.frame(abcd),
is.data.frame(co2_intensity_scenario),
is.logical(use_credit_limit),
is.logical(by_company)
)
if (lifecycle::is_present(ald)) {
lifecycle::deprecate_warn(
"0.2.0 (expected July 2022)",
"target_market_share(ald)",
"target_market_share(abcd)"
)
abcd <- ald
}
data <- rename_and_warn_ald_names(data)
data <- ungroup(warn_grouped(data, "Ungrouping input data."))
crucial_portfolio <- c(
"loan_size_outstanding",
"loan_size_credit_limit",
"name_abcd",
"sector_abcd"
)
crucial_abcd <- c(
"name_company",
"sector",
"technology",
"year",
"emission_factor",
"production"
)
crucial_scenario <- c(
"sector",
"year",
"emission_factor"
)
check_crucial_names(data, crucial_portfolio)
check_unique_id(data, "id_loan")
walk_(crucial_portfolio, ~ check_no_value_is_missing(data, .x))
check_crucial_names(abcd, crucial_abcd)
check_type_emission_factor(abcd)
abcd <- filter_and_warn_na(abcd, "production")
abcd <- filter_and_warn_na(abcd, "emission_factor")
region_isos <- change_to_lowercase_and_warn(region_isos, "isos")
walk_(crucial_abcd, ~ check_no_value_is_missing(abcd, .x))
check_crucial_names(co2_intensity_scenario, crucial_scenario)
walk_(crucial_scenario, ~ check_no_value_is_missing(co2_intensity_scenario, .x))
region_isos <- region_isos %>%
filter(source %in% unique(co2_intensity_scenario$scenario_source))
if (identical(nrow(region_isos), 0L)) {
warn("Found no matching regions for input scenario", class = "no_match")
return(empty_target_sda_output())
}
abcd <- abcd %>%
mutate(plant_location = tolower(.data$plant_location)) %>%
left_join(region_isos, by = c(plant_location = "isos")) %>%
rename(scenario_source = "source")
abcd_by_sector <- abcd %>%
aggregate_excluding(c("technology", "plant_location", "country_of_domicile"))
data <- inner_join(data, abcd_by_sector, by = abcd_columns())
summary_groups <- c(
"region",
"scenario_source"
)
if (by_company) {
data <- data %>%
summarize_unweighted_emission_factor(
!!!rlang::syms(c(summary_groups, "name_abcd"))
)
} else {
data <- data %>%
summarize_weighted_emission_factor(
!!!rlang::syms(summary_groups),
use_credit_limit = use_credit_limit
)
}
data <- data %>%
rename(sector = "sector_abcd")
relevant_sectors <- data$sector
if (identical(nrow(data), 0L)) {
warn("Found no match between loanbook and abcd.", class = "no_match")
return(empty_target_sda_output())
}
relevant_abcd_by_sector <- abcd_by_sector %>%
filter(.data$sector %in% unique(relevant_sectors))
corporate_economy <- calculate_market_average(relevant_abcd_by_sector)
interpolate_groups <- c("scenario_source", "scenario", "sector", "region")
relevant_scenario <- co2_intensity_scenario %>%
filter(.data$sector %in% unique(relevant_sectors))
if (identical(nrow(relevant_scenario), 0L)) {
warn("Found no match between loanbook and scenario.", class = "no_match")
return(empty_target_sda_output())
}
interpolated_scenario <- interpolate_scenario_yearly(
relevant_scenario,
!!!rlang::syms(interpolate_groups)
)
adjusted_scenario <- compute_abcd_adjusted_scenario(
interpolated_scenario,
corporate_economy
)
if (identical(nrow(adjusted_scenario), 0L)) {
rlang::warn("Found no scenario data for input abcd.")
return(empty_target_sda_output())
}
adjusted_scenario_with_p <- add_p_to_scenario(adjusted_scenario)
target_summary_groups <- maybe_add_name_abcd(
c("sector", "scenario", "region", "scenario_source"),
by_company
)
loanbook_targets <- compute_loanbook_targets(
data,
adjusted_scenario_with_p,
!!!rlang::syms(target_summary_groups)
)
if (identical(nrow(loanbook_targets), 0L)) {
rlang::warn("Found no scenario data for the loanbook matches.")
return(empty_target_sda_output())
}
format_and_combine_output(
data,
corporate_economy,
loanbook_targets,
adjusted_scenario,
by_company = by_company
)
}
check_type_emission_factor <- function(abcd) {
if (!is.double(abcd$emission_factor)) {
abort("The column emission_factor of the asset-level data frame (`abcd`) does not have the type double", class = "crucial_column_wrong_type")
}
}
check_unique_id <- function(data, column) {
if (sum(duplicated(data[[column]]))) {
abort(
class = "unique_ids",
glue("Column `{column}` must not contain any duplicates.", column)
)
}
invisible(data)
}
aggregate_excluding <- function(abcd, columns) {
.vars <- setdiff(names(abcd), c("production", "emission_factor", columns))
abcd %>%
dplyr::group_by_at(.vars = .vars) %>%
dplyr::filter(.data$production > 0) %>%
mutate(weight = .data$production / sum(.data$production)) %>%
summarize(
production = sum(.data$production),
emission_factor =
sum(.data$emission_factor * .data$weight / sum(.data$weight))
) %>%
ungroup()
}
maybe_add_name_abcd <- function(data, by_company = FALSE) {
out <- data
if (by_company) {
out <- c(data, "name_abcd")
}
return(out)
}
calculate_market_average <- function(data) {
data %>%
group_by(.data$sector, .data$year, .data$region, .data$scenario_source) %>%
summarize(
sector_total_production = sum(.data$production),
# Alias emission_factor_corporate_economy
.x = list(.data$production * .data$emission_factor)
) %>%
unnest(cols = ".x") %>%
group_by(.data$sector, .data$year, .data$region, .data$scenario_source) %>%
summarize(.x = sum(.data$.x / .data$sector_total_production)) %>%
rename(emission_factor_corporate_economy = ".x") %>%
ungroup()
}
compute_abcd_adjusted_scenario <- function(data, corporate_economy) {
corporate_economy_baseline <- corporate_economy %>%
group_by(.data$sector, .data$scenario_source, .data$region) %>%
filter(.data$year == min(.data$year, na.rm = TRUE)) %>%
select(
all_of(
c(
"sector",
"scenario_source",
"region",
"emission_factor_corporate_economy"
)
)
) %>%
rename(baseline_emission_factor = "emission_factor_corporate_economy") %>%
ungroup()
data %>%
filter(.data$year >= min(corporate_economy$year)) %>%
inner_join(
corporate_economy_baseline,
by = c("sector", "scenario_source", "region")
) %>%
group_by(
.data$scenario,
.data$sector,
.data$scenario_source,
.data$region
) %>%
arrange(.data$year) %>%
mutate(
baseline_adjustment =
.data$baseline_emission_factor / first(.data$emission_factor),
emission_factor_adjusted_scenario =
.data$emission_factor * .data$baseline_adjustment
) %>%
ungroup() %>%
select(
all_of(
c(
"scenario",
"sector",
"scenario_source",
"region",
"year",
"emission_factor_adjusted_scenario"
)
)
)
}
add_p_to_scenario <- function(data) {
p <- function(x) (x - last(x)) / (first(x) - last(x))
data %>%
group_by(
.data$sector,
.data$scenario,
.data$region,
.data$scenario_source
) %>%
arrange(.data$year) %>%
mutate(p = p(.data$emission_factor_adjusted_scenario)) %>%
ungroup()
}
compute_loanbook_targets <- function(data,
scenario_with_p,
...) {
data %>%
right_join(
scenario_with_p,
by = c("year", "sector", "region", "scenario_source")
) %>%
group_by(...) %>%
arrange(.data$year) %>%
mutate(
d = first(.data$emission_factor_projected) -
last(.data$emission_factor_adjusted_scenario),
emission_factor_target = (.data$d * .data$p) +
last(.data$emission_factor_adjusted_scenario)
) %>%
ungroup() %>%
select(..., all_of(c("year", "emission_factor_target")))
}
pivot_emission_factors_longer <- function(data) {
data %>%
pivot_longer(
cols = tidyr::starts_with("emission_factor_"),
names_prefix = "emission_factor_",
names_to = "emission_factor_metric",
values_to = "emission_factor_value"
)
}
format_and_combine_output <- function(lbk, corporate_economy, targets, scen, by_company = FALSE) {
scenario_sectors <- unique(scen$sector)
lbk <- filter(lbk, .data$sector %in% scenario_sectors)
corporate_economy <- filter(corporate_economy, .data$sector %in% scenario_sectors)
targets <- filter(targets, .data$sector %in% scenario_sectors)
projected <- pivot_emission_factors_longer(lbk)
corporate_economy <- pivot_emission_factors_longer(corporate_economy)
targets <- targets %>%
pivot_wider(
names_from = "scenario",
names_prefix = "emission_factor_target_",
values_from = "emission_factor_target"
) %>%
pivot_emission_factors_longer()
scenario <- scen %>%
pivot_wider(
names_from = "scenario",
names_prefix = "emission_factor_adjusted_scenario_",
values_from = "emission_factor_adjusted_scenario"
) %>%
pivot_emission_factors_longer() %>%
mutate(name_abcd = NULL)
if (by_company) {
corporate_economy <- corporate_economy %>%
mutate(name_abcd = "market")
scenario <- scenario %>%
mutate(name_abcd = "market")
}
rbind(
projected,
corporate_economy,
targets,
scenario
)
}
abcd_columns <- function() {
c(name_abcd = "name_company", sector_abcd = "sector")
}
empty_target_sda_output <- function() {
tibble(
sector = character(0),
year = integer(0),
emission_factor_metric = character(0),
emission_factor_value = numeric(0)
)
}
interpolate_scenario_yearly <- function(data, ...) {
data %>%
group_by(...) %>%
tidyr::complete(year = tidyr::full_seq(.data$year, 1)) %>%
mutate(
emission_factor = zoo::na.approx(
.data$emission_factor,
.data$year,
na.rm = FALSE
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.