Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true"),
out.width = "100%"
)
## removes files previously created by 'build_network()'
#data_path <- system.file("extdata/poa", package = "r5r")
#existing_files <- list.files(data_path)
#files_to_keep <- c(
# "poa_hexgrid.csv",
# "poa_osm.pbf",
# "poa_points_of_interest.csv",
# "poa_eptc.zip",
# "poa_trensurb.zip",
# 'fares'
# )
#files_to_remove <- existing_files[! existing_files %in% files_to_keep]
#invisible(file.remove(file.path(data_path, files_to_remove)))
## ----eval = FALSE-------------------------------------------------------------
# # from CRAN
# install.packages('r5r')
#
# # dev version with latest features
# devtools::install_github("ipeaGIT/r5r", subdir = "r-package")
## ----eval = FALSE-------------------------------------------------------------
# # install {rJavaEnv} from CRAN
# install.packages("rJavaEnv")
#
# # check version of Java currently installed (if any)
# rJavaEnv::java_check_version_rjava()
#
# ## if this is the first time you use {rJavaEnv}, you might need to run this code
# ## below to consent the installation of Java.
# # rJavaEnv::rje_consent(provided = TRUE)
#
# # install Java 21
# rJavaEnv::java_quick_install(version = 21)
#
# # check if Java was successfully installed
# rJavaEnv::java_check_version_rjava()
#
## ----message = FALSE----------------------------------------------------------
options(java.parameters = "-Xmx2G")
# By default, {r5r} uses all CPU cores available. If you want to limit the
# number of CPUs to 4, for example, you can run:
options(java.parameters = c("-Xmx2G", "-XX:ActiveProcessorCount=4"))
## ----message = FALSE, warning = FALSE-----------------------------------------
library(r5r)
library(sf)
library(data.table)
library(ggplot2)
## -----------------------------------------------------------------------------
data_path <- system.file("extdata/poa", package = "r5r")
list.files(data_path)
## -----------------------------------------------------------------------------
poi <- fread(file.path(data_path, "poa_points_of_interest.csv"))
head(poi)
## -----------------------------------------------------------------------------
points <- fread(file.path(data_path, "poa_hexgrid.csv"))
# sample points
sampled_rows <- sample(1:nrow(points), 200, replace=TRUE)
points <- points[ sampled_rows, ]
head(points)
## ----message = FALSE----------------------------------------------------------
# Indicate the path where OSM and GTFS data are stored
r5r_network <- build_network(data_path = data_path)
## ----message = FALSE----------------------------------------------------------
# set departure datetime input
departure_datetime <- as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S")
# calculate accessibility
access <- accessibility(
r5r_network,
origins = points,
destinations = points,
opportunities_colnames = c("schools", "healthcare"),
mode = c("WALK", "TRANSIT"),
departure_datetime = departure_datetime,
decay_function = "step",
cutoffs = 60
)
head(access)
## ----message = FALSE----------------------------------------------------------
# set inputs
mode <- c("WALK", "TRANSIT")
max_walk_time <- 30 # minutes
max_trip_duration <- 120 # minutes
departure_datetime <- as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S")
# calculate a travel time matrix
ttm <- travel_time_matrix(
r5r_network,
origins = poi,
destinations = poi,
mode = mode,
departure_datetime = departure_datetime,
max_walk_time = max_walk_time,
max_trip_duration = max_trip_duration
)
head(ttm)
## ----ttm head, echo=FALSE, message=FALSE, out.width='100%', eval = FALSE------
# knitr::include_graphics("https://github.com/ipeaGIT/r5r/blob/master/r-package/inst/img/vig_output_ttm.png?raw=true")
## ----message = FALSE----------------------------------------------------------
# calculate a travel time matrix
ettm <- expanded_travel_time_matrix(
r5r_network,
origins = poi,
destinations = poi,
mode = mode,
departure_datetime = departure_datetime,
breakdown = TRUE,
max_walk_time = max_walk_time,
max_trip_duration = max_trip_duration
)
head(ettm)
## ----message = FALSE----------------------------------------------------------
# set inputs
origins <- poi[10,]
destinations <- poi[12,]
mode <- c("WALK", "TRANSIT")
max_walk_time <- 60 # minutes
departure_datetime <- as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S")
# calculate detailed itineraries
det <- detailed_itineraries(
r5r_network,
origins = origins,
destinations = destinations,
mode = mode,
departure_datetime = departure_datetime,
max_walk_time = max_walk_time,
shortest_path = FALSE
)
head(det)
## ----detailed head, echo = FALSE, out.width='100%', message = FALSE, eval = FALSE----
# knitr::include_graphics("https://github.com/ipeaGIT/r5r/blob/master/r-package/inst/img/vig_output_detailed.png?raw=true")
## ----message = FALSE----------------------------------------------------------
# extract OSM network
street_net <- r5r::street_network_to_sf(r5r_network)
# extract public transport network
transit_net <- r5r::transit_network_to_sf(r5r_network)
# plot
ggplot() +
geom_sf(data = street_net$edges, color='gray85') +
geom_sf(data = det, aes(color=mode)) +
facet_wrap(.~option) +
theme_void()
## ----ggplot2 output, echo = FALSE, out.width='100%', message = FALSE, eval = FALSE----
# knitr::include_graphics("https://github.com/ipeaGIT/r5r/blob/master/r-package/inst/img/vig_detailed_ggplot.png?raw=true")
## ----message = FALSE----------------------------------------------------------
r5r::stop_r5(r5r_network)
rJava::.jgc(R.gc = TRUE)
## ----eval = TRUE, include = FALSE, message = FALSE----------------------------
# clean cache (CRAN policy)
r5r::r5r_cache(delete_file = 'all')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.