Nothing
area <- function(db, grpBy = NULL, polys = NULL, returnSpatial = FALSE,
byLandType = FALSE, landType = 'forest', method = 'TI',
lambda = 0.5, treeDomain = NULL, areaDomain = NULL,
totals = TRUE, variance = FALSE, byPlot = FALSE, condList = FALSE,
nCores = 1) {
# Defuse user-supplied expressions in grpBy, areaDomain, and treeDomain
grpBy_quo <- rlang::enquo(grpBy)
areaDomain <- rlang::enquo(areaDomain)
treeDomain <- rlang::enquo(treeDomain)
# Handle iterator if db is remote
remote <- ifelse(class(db) == 'Remote.FIA.Database', 1, 0)
# Takes value 1 if not remote. iter for remote is a vector of different state IDs.
iter <- remoteIter(db, remote)
# Check for a most recent subset (simple logical value)
mr <- checkMR(db, remote)
# Prep for areal summary (converts polys to sf, converts factors to chrs,
# and adds the polyID column giving a unique ID to each areal unit).
polys <- arealSumPrep1(polys)
# Run the main portion of the model
out <- lapply(X = iter, FUN = areaStarter, db, grpBy_quo = grpBy_quo,
polys, returnSpatial, byLandType, landType, method,
lambda, treeDomain, areaDomain, totals, byPlot, condList,
nCores, remote, mr)
# Bring the results back
out <- unlist(out, recursive = FALSE)
# Throw an error if there are no plots that occur within the polygons of interest
if (remote) {
out <- dropStatesOutsidePolys(out)
}
# Extract things from the output list
aEst <- dplyr::bind_rows(out[names(out) == 'aEst'])
tEst <- dplyr::bind_rows(out[names(out) == 'tEst'])
grpBy <- out[names(out) == 'grpBy'][[1]]
grpSyms <- dplyr::syms(grpBy)
# Summarize population estimates across estimation units ----------------
if (!byPlot & !condList) {
# Combine most recent population estimates across states with potentially
# different reporting schedules (e.g., if 2016 is most recent in MI and 2017
# is most recent in WI, combine them and label as 2017.
if (mr) {
tEst <- combineMR(tEst)
aEst <- combineMR(aEst)
}
# Totals and ratios ---------------
tEst <- tEst %>%
dplyr::group_by(!!!grpSyms) %>%
dplyr::summarize(dplyr::across(dplyr::everything(), \(x) sum(x, na.rm = TRUE)))
aEst <- aEst %>%
dplyr::group_by(YEAR) %>%
dplyr::summarize(dplyr::across(dplyr::everything(), \(x) sum(x, na.rm = TRUE))) %>%
dplyr::select(YEAR, fad_mean, fad_var, nPlots.y)
# Bring them together
tEst <- tEst %>%
dplyr::left_join(aEst, by = 'YEAR') %>%
# Renaming, computing ratios, and SE
dplyr::mutate(PERC_AREA = fa_mean / fad_mean,
AREA_TOTAL = fa_mean,
AREA_TOTAL_SE = sqrt(fa_var) / AREA_TOTAL *100,
# Ratio variance
rVar = ratioVar(fa_mean, fad_mean, fa_var, fad_var, fa_cv),
# Convert to percentage
PERC_AREA = PERC_AREA * 100,
rVar = rVar * (100^2),
# Ratio variances
# These aren't truly negative values, but come from rounding errors
# when PERC_AREA = 100, i.e., estimated variance is 0
PERC_AREA_SE = dplyr::case_when(rVar < 0 ~ 0,
TRUE ~ sqrt(rVar) / PERC_AREA * 100),
PERC_AREA_VAR = dplyr::case_when(rVar < 0 ~ 0,
TRUE ~ rVar),
AREA_TOTAL_VAR = fa_var,
nPlots_AREA_NUM = nPlots.x,
nPlots_AREA_DEN = nPlots.y,
N = P2PNTCNT_EU) %>%
dplyr::select(!!!grpSyms, PERC_AREA, AREA_TOTAL, PERC_AREA_SE, AREA_TOTAL_SE,
PERC_AREA_VAR, AREA_TOTAL_VAR, nPlots_AREA_NUM, nPlots_AREA_DEN, N)
# Drop totals unless told not to
if (!totals) {
tEst <- tEst[, !stringr::str_detect(names(tEst), '_TOTAL')]
}
# Select either variance or sampling errors, depending on input
if (variance) {
tEst <- tEst[, !stringr::str_detect(names(tEst), '_SE')]
} else {
tEst <- tEst[, !stringr::str_detect(names(tEst), '_VAR')]
}
}
# Pretty output
tEst <- tEst %>%
dplyr::ungroup() %>%
dplyr::mutate_if(is.factor, as.character) %>%
as_tibble()
# We don't include YEAR in condList output, and NA groups will be important
# for retaining non-treed forestland
if (!condList) {
tEst <- tEst %>%
tidyr::drop_na(grpBy[!c(grpBy %in% names(polys))]) %>%
dplyr::arrange(YEAR)
}
# Prep for spatial plots
if (returnSpatial & byPlot) {
grpBy <- grpBy[grpBy %in% c('LAT', 'LON') == FALSE]
}
# For spatial polygons
if (returnSpatial & !byPlot) {
sfCol <- attr(polys, 'sf_column')
sfColSyms <- dplyr::syms(sfCol)
tEst <- dplyr::left_join(tEst,
as.data.frame(dplyr::select(polys, polyID, !!!sfColSyms)),
by = 'polyID')
}
# Convert to sf if spatial
if (returnSpatial) {
tEst <- sf::st_sf(tEst)
}
return(tEst)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.