Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----input--------------------------------------------------------------------
set.seed(1234)
library(rNeighborGWAS)
# convert "TTN" genotype data into a rNeighborGWAS format
data("TTN", package="gaston")
x <- gaston::as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)
g <- gaston2neiGWAS(x)
# simulate "fake_nei" dataset using nei_simu()
geno <- g$geno
gmap <- g$gmap
x <- runif(nrow(geno),1,100)
y <- runif(nrow(geno),1,100)
smap <- cbind(x,y)
grouping <- c(rep(1,nrow(geno)/2), rep(2,nrow(geno)/2), 2)
pheno <- nei_simu(geno=geno, smap=smap, scale=43,
grouping=grouping, n_causal=50,
pveB=0.3, pve=0.6
)
fake_nei <- list()
fake_nei[[1]] <- geno
fake_nei[[2]] <- gmap
fake_nei[[3]] <- smap
fake_nei[[4]] <- data.frame(pheno,grouping)
names(fake_nei) <- c("geno","gmap","smap","pheno")
fake_nei$geno[1:5,1:10] # Note: 0 indicates heterozygotes
head(fake_nei$smap)
## ----PVE----------------------------------------------------------------------
scale_seq <- quantile(dist(fake_nei$smap),c(0.2*rep(1:5)))
pve_out <- calc_PVEnei(geno=fake_nei$geno, pheno=fake_nei$pheno[,1],
smap=fake_nei$smap, scale_seq=scale_seq,
addcovar=as.matrix(fake_nei$pheno$grouping),
grouping=fake_nei$pheno$grouping
)
delta_PVE(pve_out)
## ----GWAS---------------------------------------------------------------------
scale <- 43.9
gwas_out <- neiGWAS(geno=fake_nei$geno, pheno=fake_nei$pheno[,1],
gmap=fake_nei$gmap, smap=fake_nei$smap,
scale=scale, addcovar=as.matrix(fake_nei$pheno$grouping),
grouping=fake_nei$pheno$grouping
)
gaston::manhattan(gwas_out)
gaston::qqplot.pvalues(gwas_out$p)
## ----LMM, eval=FALSE----------------------------------------------------------
# scale <- 43.9
# g_nei <- nei_coval(geno=fake_nei$geno, smap=fake_nei$smap,
# scale=scale, grouping=fake_nei$pheno$grouping
# )
#
# gwas_out <- nei_lmm(geno=fake_nei$geno, g_nei=g_nei,
# pheno=fake_nei$pheno[,1],
# addcovar=as.matrix(fake_nei$pheno$grouping)
# )
## ----bin, eval=FALSE----------------------------------------------------------
# fake_nei$pheno[,1][fake_nei$pheno[,1]>mean(fake_nei$pheno[,1])] <- 1
# fake_nei$pheno[,1][fake_nei$pheno[,1]!=1] <- 0
#
# pve_out <- calc_PVEnei(geno=fake_nei$geno, pheno=fake_nei$pheno[,1],
# smap=fake_nei$smap, scale_seq=scale_seq,
# addcovar=as.matrix(fake_nei$pheno$grouping),
# grouping=fake_nei$pheno$grouping,
# response="binary"
# )
#
# gwas_out <- neiGWAS(geno=fake_nei$geno, pheno=fake_nei$pheno[,1],
# gmap=fake_nei$gmap, smap=fake_nei$smap,
# scale=scale, addcovar=as.matrix(fake_nei$pheno$grouping),
# grouping=fake_nei$pheno$grouping,
# response="binary"
# )
# gaston::manhattan(gwas_out)
# gaston::qqplot.pvalues(gwas_out$p)
#
# gwas_out <- nei_lmm(geno=fake_nei$geno, g_nei=g_nei,
# pheno=fake_nei$pheno[,1],
# addcovar=as.matrix(fake_nei$pheno$grouping),
# response="binary"
# )
## ----asymmetry, eval=FALSE----------------------------------------------------
# scale <- 43.9
# g_nei <- nei_coval(geno=fake_nei$geno, smap=fake_nei$smap,
# scale=scale, grouping=fake_nei$pheno$grouping
# )
#
# gwas_out <- nei_lmm(geno=fake_nei$geno, g_nei=g_nei,
# pheno=fake_nei$pheno[,1],
# addcovar=as.matrix(fake_nei$pheno$grouping),
# asym=TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.