Nothing
mnl_show_interactions <- c("None" = "", "2-way" = 2, "3-way" = 3)
mnl_predict <- c(
"None" = "none",
"Data" = "data",
"Command" = "cmd",
"Data & Command" = "datacmd"
)
mnl_check <- c(
"Drop intercept" = "no_int", "Standardize" = "standardize",
"Center" = "center", "Stepwise" = "stepwise-backward"
)
mnl_sum_check <- c(
"Confidence intervals" = "confint", "RRRs" = "rrr", "Confusion" = "confusion"
)
mnl_plots <- c(
"None" = "none", "Distribution" = "dist",
"Correlations" = "correlations", "Coefficient (RRR) plot" = "coef"
)
## list of function arguments
mnl_args <- as.list(formals(mnl))
## list of function inputs selected by user
mnl_inputs <- reactive({
## loop needed because reactive values don't allow single bracket indexing
mnl_args$data_filter <- if (input$show_filter) input$data_filter else ""
mnl_args$arr <- if (input$show_filter) input$data_arrange else ""
mnl_args$rows <- if (input$show_filter) input$data_rows else ""
mnl_args$dataset <- input$dataset
for (i in r_drop(names(mnl_args))) {
mnl_args[[i]] <- input[[paste0("mnl_", i)]]
}
mnl_args
})
mnl_sum_args <- as.list(if (exists("summary.mnl")) {
formals(summary.mnl)
} else {
formals(radiant.model:::summary.mnl)
})
## list of function inputs selected by user
mnl_sum_inputs <- reactive({
## loop needed because reactive values don't allow single bracket indexing
for (i in names(mnl_sum_args)) {
mnl_sum_args[[i]] <- input[[paste0("mnl_", i)]]
}
mnl_sum_args
})
mnl_plot_args <- as.list(if (exists("plot.mnl")) {
formals(plot.mnl)
} else {
formals(radiant.model:::plot.mnl)
})
## list of function inputs selected by user
mnl_plot_inputs <- reactive({
## loop needed because reactive values don't allow single bracket indexing
for (i in names(mnl_plot_args)) {
mnl_plot_args[[i]] <- input[[paste0("mnl_", i)]]
}
# cat(paste0(names(mnl_plot_args), " ", mnl_plot_args, collapse = ", "), file = stderr(), "\n")
mnl_plot_args
})
mnl_pred_args <- as.list(if (exists("predict.mnl")) {
formals(predict.mnl)
} else {
formals(radiant.model:::predict.mnl)
})
# list of function inputs selected by user
mnl_pred_inputs <- reactive({
# loop needed because reactive values don't allow single bracket indexing
for (i in names(mnl_pred_args)) {
mnl_pred_args[[i]] <- input[[paste0("mnl_", i)]]
}
mnl_pred_args$pred_cmd <- mnl_pred_args$pred_data <- ""
if (input$mnl_predict == "cmd") {
mnl_pred_args$pred_cmd <- gsub("\\s{2,}", " ", input$mnl_pred_cmd) %>%
gsub(";\\s+", ";", .) %>%
gsub("\"", "\'", .)
} else if (input$mnl_predict == "data") {
mnl_pred_args$pred_data <- input$mnl_pred_data
} else if (input$mnl_predict == "datacmd") {
mnl_pred_args$pred_cmd <- gsub("\\s{2,}", " ", input$mnl_pred_cmd) %>%
gsub(";\\s+", ";", .) %>%
gsub("\"", "\'", .)
mnl_pred_args$pred_data <- input$mnl_pred_data
}
mnl_pred_args
})
mnl_pred_plot_args <- as.list(if (exists("plot.model.predict")) {
formals(plot.model.predict)
} else {
formals(radiant.model:::plot.model.predict)
})
# list of function inputs selected by user
mnl_pred_plot_inputs <- reactive({
# loop needed because reactive values don't allow single bracket indexing
for (i in names(mnl_pred_plot_args)) {
mnl_pred_plot_args[[i]] <- input[[paste0("mnl_", i)]]
}
mnl_pred_plot_args
})
output$ui_mnl_rvar <- renderUI({
withProgress(message = "Acquiring variable information", value = 1, {
vars <- groupable_vars()
})
init <- isolate(input$mnl_rvar)
selectInput(
inputId = "mnl_rvar", label = "Response variable:", choices = vars,
selected = state_single("mnl_rvar", vars, init), multiple = FALSE
)
})
output$ui_mnl_lev <- renderUI({
req(available(input$mnl_rvar))
rvar <- .get_data()[[input$mnl_rvar]]
levs <- unique(rvar)
if (length(levs) > 50) {
HTML("<label>More than 50 levels. Please choose another response variable</label>")
} else {
selectInput(
inputId = "mnl_lev", label = "Choose base level:",
choices = levs, selected = state_init("mnl_lev")
)
}
})
output$ui_mnl_evar <- renderUI({
req(available(input$mnl_rvar))
vars <- varnames()
if (length(vars) > 0 && input$mnl_rvar %in% vars) {
vars <- vars[-which(vars == input$mnl_rvar)]
}
selectInput(
inputId = "mnl_evar", label = "Explanatory variables:", choices = vars,
selected = state_multiple("mnl_evar", vars, isolate(input$mnl_evar)),
multiple = TRUE, size = min(10, length(vars)), selectize = FALSE
)
})
output$ui_mnl_wts <- renderUI({
req(available(input$mnl_rvar), available(input$mnl_evar))
isNum <- .get_class() %in% c("integer", "numeric", "ts")
vars <- varnames()[isNum]
if (length(vars) > 0 && any(vars %in% input$mnl_evar)) {
vars <- base::setdiff(vars, input$mnl_evar)
names(vars) <- varnames() %>%
(function(x) x[match(vars, x)]) %>%
names()
}
vars <- c("None", vars)
selectInput(
inputId = "mnl_wts", label = "Weights:", choices = vars,
selected = state_single("mnl_wts", vars),
multiple = FALSE
)
})
output$ui_mnl_test_var <- renderUI({
req(available(input$mnl_evar))
vars <- input$mnl_evar
if (!is.null(input$mnl_int)) vars <- c(vars, input$mnl_int)
selectizeInput(
inputId = "mnl_test_var", label = "Variables to test:",
choices = vars,
selected = state_multiple("mnl_test_var", vars, isolate(input$mnl_test_var)),
multiple = TRUE,
options = list(placeholder = "None", plugins = list("remove_button"))
)
})
## not clear why this is needed because state_multiple should handle this
observeEvent(is.null(input$mnl_test_var), {
if ("mnl_test_var" %in% names(input)) r_state$mnl_test_var <<- NULL
})
output$ui_mnl_show_interactions <- renderUI({
# choices <- mnl_show_interactions[1:max(min(3, length(input$mnl_evar)), 1)]
vars <- input$mnl_evar
isNum <- .get_class() %in% c("integer", "numeric", "ts")
if (any(vars %in% varnames()[isNum])) {
choices <- mnl_show_interactions[1:3]
} else {
choices <- mnl_show_interactions[1:max(min(3, length(input$mnl_evar)), 1)]
}
radioButtons(
inputId = "mnl_show_interactions", label = "Interactions:",
choices = choices, selected = state_init("mnl_show_interactions"),
inline = TRUE
)
})
output$ui_mnl_show_interactions <- renderUI({
vars <- input$mnl_evar
isNum <- .get_class() %in% c("integer", "numeric", "ts")
if (any(vars %in% varnames()[isNum])) {
choices <- mnl_show_interactions[1:3]
} else {
choices <- mnl_show_interactions[1:max(min(3, length(input$mnl_evar)), 1)]
}
radioButtons(
inputId = "mnl_show_interactions", label = "Interactions:",
choices = choices, selected = state_init("mnl_show_interactions"),
inline = TRUE
)
})
output$ui_mnl_int <- renderUI({
choices <- character(0)
if (isolate("mnl_show_interactions" %in% names(input)) &&
is.empty(input$mnl_show_interactions)) {
} else if (is.empty(input$mnl_show_interactions)) {
return()
} else {
vars <- input$mnl_evar
if (not_available(vars)) {
return()
} else {
## quadratic and qubic terms
isNum <- .get_class() %in% c("integer", "numeric", "ts")
isNum <- intersect(vars, varnames()[isNum])
if (length(isNum) > 0) {
choices <- qterms(isNum, input$mnl_show_interactions)
}
## list of interaction terms to show
if (length(vars) > 1) {
choices <- c(choices, iterms(vars, input$mnl_show_interactions))
}
if (length(choices) == 0) {
return()
}
}
}
selectInput(
"mnl_int",
label = NULL,
choices = choices,
selected = state_init("mnl_int"),
multiple = TRUE,
size = min(8, length(choices)),
selectize = FALSE
)
})
## reset prediction and plot settings when the dataset changes
observeEvent(input$dataset, {
updateSelectInput(session = session, inputId = "mnl_predict", selected = "none")
updateSelectInput(session = session, inputId = "mnl_plots", selected = "none")
})
output$ui_mnl_store_pred_name <- renderUI({
req(input$mnl_rvar)
levs <- .get_data()[[input$mnl_rvar]] %>%
as.factor() %>%
levels() %>%
fix_names() %>%
paste(collapse = ", ")
textInput(
"mnl_store_pred_name",
"Store predictions:",
state_init("mnl_store_pred_name", levs)
)
})
output$ui_mnl_predict_plot <- renderUI({
req(input$mnl_rvar)
var_colors <- ".class" %>% set_names(input$mnl_rvar)
predict_plot_controls("mnl", vars_color = var_colors, init_color = ".class")
})
output$ui_mnl_nrobs <- renderUI({
nrobs <- nrow(.get_data())
choices <- c("1,000" = 1000, "5,000" = 5000, "10,000" = 10000, "All" = -1) %>%
.[. < nrobs]
selectInput(
"mnl_nrobs", "Number of data points plotted:",
choices = choices,
selected = state_single("mnl_nrobs", choices, 1000)
)
})
output$ui_mnl_store_res_name <- renderUI({
req(input$dataset)
textInput("mnl_store_res_name", "Store residuals:", "", placeholder = "Provide variable name")
})
## add a spinning refresh icon if the model needs to be (re)estimated
run_refresh(reg_args, "mnl", tabs = "tabs_mnl", label = "Estimate model", relabel = "Re-estimate model")
output$ui_mnl <- renderUI({
req(input$dataset)
tagList(
conditionalPanel(
condition = "input.tabs_mnl == 'Summary'",
wellPanel(
actionButton("mnl_run", "Estimate model", width = "100%", icon = icon("play", verify_fa = FALSE), class = "btn-success")
)
),
wellPanel(
conditionalPanel(
condition = "input.tabs_mnl == 'Summary'",
uiOutput("ui_mnl_rvar"),
uiOutput("ui_mnl_lev"),
uiOutput("ui_mnl_evar"),
uiOutput("ui_mnl_wts"),
conditionalPanel(
condition = "input.mnl_evar != null",
uiOutput("ui_mnl_show_interactions"),
conditionalPanel(
condition = "input.mnl_show_interactions != ''",
uiOutput("ui_mnl_int")
),
uiOutput("ui_mnl_test_var"),
checkboxGroupInput(
"mnl_check", NULL, mnl_check,
selected = state_group("mnl_check"), inline = TRUE
),
checkboxGroupInput(
"mnl_sum_check", NULL, mnl_sum_check,
selected = state_group("mnl_sum_check", ""), inline = TRUE
)
)
),
conditionalPanel(
condition = "input.tabs_mnl == 'Predict'",
selectInput(
"mnl_predict",
label = "Prediction input type:", mnl_predict,
selected = state_single("mnl_predict", mnl_predict, "none")
),
conditionalPanel(
"input.mnl_predict == 'data' | input.mnl_predict == 'datacmd'",
selectizeInput(
inputId = "mnl_pred_data", label = "Prediction data:",
choices = c("None" = "", r_info[["datasetlist"]]),
selected = state_single("mnl_pred_data", c("None" = "", r_info[["datasetlist"]])),
multiple = FALSE
)
),
conditionalPanel(
"input.mnl_predict == 'cmd' | input.mnl_predict == 'datacmd'",
returnTextAreaInput(
"mnl_pred_cmd", "Prediction command:",
value = state_init("mnl_pred_cmd", ""),
rows = 3,
placeholder = "Type a formula to set values for model variables (e.g., class = '1st'; gender = 'male') and press return"
)
),
conditionalPanel(
condition = "input.mnl_predict != 'none'",
checkboxInput("mnl_pred_plot", "Plot predictions", state_init("mnl_pred_plot", FALSE)),
conditionalPanel(
"input.mnl_pred_plot == true",
uiOutput("ui_mnl_predict_plot")
)
),
## only show if full data is used for prediction
conditionalPanel(
"input.mnl_predict == 'data' | input.mnl_predict == 'datacmd'",
tags$table(
tags$td(uiOutput("ui_mnl_store_pred_name")),
tags$td(actionButton("mnl_store_pred", "Store", icon = icon("plus", verify_fa = FALSE)), class = "top")
)
)
),
conditionalPanel(
condition = "input.tabs_mnl == 'Plot'",
selectInput(
"mnl_plots", "Plots:",
choices = mnl_plots,
selected = state_single("mnl_plots", mnl_plots)
),
conditionalPanel(
condition = "input.mnl_plots == 'coef'",
checkboxInput("mnl_intercept", "Include intercept", state_init("mnl_intercept", FALSE))
),
conditionalPanel(
condition = "input.mnl_plots == 'correlations' |
input.mnl_plots == 'scatter'",
uiOutput("ui_mnl_nrobs")
)
),
# Using && to check that input.mnl_sum_check is not null (must be &&)
conditionalPanel(
condition = "(input.tabs_mnl == 'Summary' && input.mnl_sum_check != undefined && (input.mnl_sum_check.indexOf('confint') >= 0 || input.mnl_sum_check.indexOf('rrr') >= 0)) ||
(input.tabs_mnl == 'Plot' && input.mnl_plots == 'coef')",
sliderInput(
"mnl_conf_lev", "Confidence level:",
min = 0.80,
max = 0.99, value = state_init("mnl_conf_lev", .95),
step = 0.01
)
),
conditionalPanel(
condition = "input.tabs_mnl == 'Summary'",
tags$table(
# tags$td(textInput("mnl_store_res_name", "Store residuals:", state_init("mnl_store_res_name", "residuals_logit"))),
tags$td(uiOutput("ui_mnl_store_res_name")),
tags$td(actionButton("mnl_store_res", "Store", icon = icon("plus", verify_fa = FALSE)), class = "top")
)
)
),
help_and_report(
modal_title = "Multinomial logistic regression (MNL)", fun_name = "mnl",
help_file = inclRmd(file.path(getOption("radiant.path.model"), "app/tools/help/mnl.Rmd"))
)
)
})
mnl_plot <- reactive({
if (mnl_available() != "available") {
return()
}
if (is.empty(input$mnl_plots, "none")) {
return()
}
plot_height <- 500
plot_width <- 650
nrVars <- length(input$mnl_evar) + 1
if (input$mnl_plots == "dist") plot_height <- (plot_height / 2) * ceiling(nrVars / 2)
if (input$mnl_plots == "fit") plot_width <- 1.5 * plot_width
if (input$mnl_plots == "correlations") {
plot_height <- 150 * nrVars
plot_width <- 150 * nrVars
}
if (input$mnl_plots == "scatter") plot_height <- 300 * nrVars
if (input$mnl_plots == "coef") {
nr_coeff <- broom::tidy(.mnl()$model) %>% nrow()
plot_height <- 300 + 10 * nr_coeff
}
list(plot_width = plot_width, plot_height = plot_height)
})
mnl_plot_width <- function() {
mnl_plot() %>%
(function(x) if (is.list(x)) x$plot_width else 650)
}
mnl_plot_height <- function() {
mnl_plot() %>%
(function(x) if (is.list(x)) x$plot_height else 500)
}
mnl_pred_plot_height <- function() {
if (input$mnl_pred_plot) 500 else 1
}
## output is called from the main radiant ui.R
output$mnl <- renderUI({
register_print_output("summary_mnl", ".summary_mnl")
register_print_output("predict_mnl", ".predict_print_mnl")
register_plot_output(
"predict_plot_mnl", ".predict_plot_mnl",
height_fun = "mnl_pred_plot_height"
)
register_plot_output(
"plot_mnl", ".plot_mnl",
height_fun = "mnl_plot_height",
width_fun = "mnl_plot_width"
)
## two separate tabs
mnl_output_panels <- tabsetPanel(
id = "tabs_mnl",
tabPanel(
"Summary",
download_link("dl_mnl_coef"), br(),
verbatimTextOutput("summary_mnl")
),
tabPanel(
"Predict",
conditionalPanel(
"input.mnl_pred_plot == true",
download_link("dlp_mnl_pred"),
plotOutput("predict_plot_mnl", width = "100%", height = "100%")
),
download_link("dl_mnl_pred"), br(),
verbatimTextOutput("predict_mnl")
),
tabPanel(
"Plot",
download_link("dlp_mnl"),
plotOutput("plot_mnl", width = "100%", height = "100%")
)
)
stat_tab_panel(
menu = "Model > Estimate",
tool = "Multinomial logistic regression (MNL)",
tool_ui = "ui_mnl",
output_panels = mnl_output_panels
)
})
mnl_available <- reactive({
if (not_available(input$mnl_rvar)) {
"This analysis requires a response variable with two or more levels and one\nor more explanatory variables. If these variables are not available\nplease select another dataset.\n\n" %>%
suggest_data("titanic")
} else if (not_available(input$mnl_evar)) {
"Please select one or more explanatory variables.\n\n" %>%
suggest_data("titanic")
} else {
"available"
}
})
.mnl <- eventReactive(input$mnl_run, {
req(input$mnl_lev)
req(input$mnl_wts == "None" || available(input$mnl_wts))
withProgress(message = "Estimating model", value = 1, {
lgi <- mnl_inputs()
lgi$envir <- r_data
do.call(mnl, lgi)
})
})
.summary_mnl <- reactive({
if (not_pressed(input$mnl_run)) {
return("** Press the Estimate button to estimate the model **")
}
if (mnl_available() != "available") {
return(mnl_available())
}
do.call(summary, c(list(object = .mnl()), mnl_sum_inputs()))
})
.predict_mnl <- reactive({
if (not_pressed(input$mnl_run)) {
return("** Press the Estimate button to estimate the model **")
}
if (mnl_available() != "available") {
return(mnl_available())
}
if (is.empty(input$mnl_predict, "none")) {
return("** Select prediction input **")
}
if ((input$mnl_predict == "data" || input$mnl_predict == "datacmd") && is.empty(input$mnl_pred_data)) {
return("** Select data for prediction **")
}
if (input$mnl_predict == "cmd" && is.empty(input$mnl_pred_cmd)) {
return("** Enter prediction commands **")
}
withProgress(message = "Generating predictions", value = 1, {
lgi <- mnl_pred_inputs()
lgi$object <- .mnl()
lgi$envir <- r_data
do.call(predict, lgi)
})
})
.predict_print_mnl <- reactive({
.predict_mnl() %>%
(function(x) if (is.character(x)) cat(x, "\n") else print(x))
})
.predict_plot_mnl <- reactive({
req(
pressed(input$mnl_run), input$mnl_pred_plot,
available(input$mnl_xvar),
!is.empty(input$mnl_predict, "none")
)
withProgress(message = "Generating prediction plot", value = 1, {
do.call(plot, c(list(x = .predict_mnl()), mnl_pred_plot_inputs()))
})
})
.plot_mnl <- reactive({
if (not_pressed(input$mnl_run)) {
return("** Press the Estimate button to estimate the model **")
} else if (is.empty(input$mnl_plots, "none")) {
return("Please select a mnl regression plot from the drop-down menu")
} else if (mnl_available() != "available") {
return(mnl_available())
}
if (input$mnl_plots %in% c("correlations", "scatter")) req(input$mnl_nrobs)
if (input$mnl_plots == "correlations") {
capture_plot(do.call(plot, c(list(x = .mnl()), mnl_plot_inputs())))
} else {
withProgress(message = "Generating plots", value = 1, {
do.call(plot, c(list(x = .mnl()), mnl_plot_inputs(), shiny = TRUE))
})
}
})
mnl_report <- function() {
outputs <- c("summary")
inp_out <- list("", "")
inp_out[[1]] <- clean_args(mnl_sum_inputs(), mnl_sum_args[-1])
figs <- FALSE
if (!is.empty(input$mnl_plots, "none")) {
inp <- check_plot_inputs(mnl_plot_inputs())
inp_out[[2]] <- clean_args(inp, mnl_plot_args[-1])
inp_out[[2]]$custom <- FALSE
outputs <- c(outputs, "plot")
figs <- TRUE
}
if (!is.empty(input$mnl_store_res_name)) {
name <- input$mnl_store_res_name
if (!is.empty(name)) {
name <- unlist(strsplit(name, "(\\s*,\\s*|\\s*;\\s*)")) %>%
fix_names() %T>%
updateTextInput(session, "mnl_store_res_name", value = .) %>%
deparse(control = getOption("dctrl"), width.cutoff = 500L)
}
xcmd <- paste0(
input$dataset, " <- store(",
input$dataset, ", result, name = ", name, ")\n"
)
} else {
xcmd <- ""
}
if (!is.empty(input$mnl_predict, "none") &&
(!is.empty(input$mnl_pred_data) || !is.empty(input$mnl_pred_cmd))) {
pred_args <- clean_args(mnl_pred_inputs(), mnl_pred_args[-1])
if (!is.empty(pred_args$pred_cmd)) {
pred_args$pred_cmd <- strsplit(pred_args$pred_cmd, ";\\s*")[[1]]
} else {
pred_args$pred_cmd <- NULL
}
if (!is.empty(pred_args$pred_data)) {
pred_args$pred_data <- as.symbol(pred_args$pred_data)
} else {
pred_args$pred_data <- NULL
}
inp_out[[2 + figs]] <- pred_args
outputs <- c(outputs, "pred <- predict")
xcmd <- paste0(xcmd, "print(pred, n = 10)")
if (input$mnl_predict %in% c("data", "datacmd")) {
name <- input$mnl_store_pred_name
if (!is.empty(name)) {
name <- unlist(strsplit(input$mnl_store_pred_name, "(\\s*,\\s*|\\s*;\\s*)")) %>%
fix_names() %>%
deparse(., control = getOption("dctrl"), width.cutoff = 500L)
}
xcmd <- paste0(
xcmd, "\n", input$mnl_pred_data, " <- store(",
input$mnl_pred_data, ", pred, name = ", name, ")"
)
}
# xcmd <- paste0(xcmd, "\n# write.csv(pred, file = \"~/mnl_predictions.csv\", row.names = FALSE)")
if (input$mnl_pred_plot && !is.empty(input$mnl_xvar)) {
inp_out[[3 + figs]] <- clean_args(mnl_pred_plot_inputs(), mnl_pred_plot_args[-1])
inp_out[[3 + figs]]$result <- "pred"
outputs <- c(outputs, "plot")
figs <- TRUE
}
}
update_report(
inp_main = clean_args(mnl_inputs(), mnl_args),
fun_name = "mnl",
inp_out = inp_out,
outputs = outputs,
figs = figs,
fig.width = mnl_plot_width(),
fig.height = mnl_plot_height(),
xcmd = xcmd
)
}
observeEvent(input$mnl_store_res, {
req(pressed(input$mnl_run))
robj <- .mnl()
if (!is.list(robj)) {
return()
}
fixed <- unlist(strsplit(input$mnl_store_res_name, "(\\s*,\\s*|\\s*;\\s*)")) %>%
fix_names() %>%
paste0(collapse = ", ")
updateTextInput(session, "mnl_store_res_name", value = fixed)
withProgress(
message = "Storing residuals", value = 1,
r_data[[input$dataset]] <- store(r_data[[input$dataset]], robj, name = fixed)
)
})
observeEvent(input$mnl_store_pred, {
req(!is.empty(input$mnl_pred_data), pressed(input$mnl_run))
pred <- .predict_mnl()
if (is.null(pred)) {
return()
}
fixed <- unlist(strsplit(input$mnl_store_pred_name, "(\\s*,\\s*|\\s*;\\s*)")) %>%
fix_names() %>%
paste0(collapse = ", ")
updateTextInput(session, "mnl_store_pred_name", value = fixed)
withProgress(
message = "Storing predictions", value = 1,
r_data[[input$mnl_pred_data]] <- store(
r_data[[input$mnl_pred_data]], pred,
name = fixed
)
)
})
dl_mnl_coef <- function(path) {
if (pressed(input$mnl_run)) {
write.coeff(.mnl(), file = path)
} else {
cat("No output available. Press the Estimate button to generate results", file = path)
}
}
download_handler(
id = "dl_mnl_coef",
fun = dl_mnl_coef,
fn = function() paste0(input$dataset, "_mnl_coef"),
type = "csv",
caption = "Save coefficients"
)
dl_mnl_pred <- function(path) {
if (pressed(input$mnl_run)) {
write.csv(.predict_mnl(), file = path, row.names = FALSE)
} else {
cat("No output available. Press the Estimate button to generate results", file = path)
}
}
download_handler(
id = "dl_mnl_pred",
fun = dl_mnl_pred,
fn = function() paste0(input$dataset, "_mnl_pred"),
type = "csv",
caption = "Save predictions"
)
download_handler(
id = "dlp_mnl_pred",
fun = download_handler_plot,
fn = function() paste0(input$dataset, "_mnl_pred"),
type = "png",
caption = "Save mnl prediction plot",
plot = .predict_plot_mnl,
width = plot_width,
height = mnl_pred_plot_height
)
download_handler(
id = "dlp_mnl",
fun = download_handler_plot,
fn = function() paste0(input$dataset, "_", input$mnl_plots, "_logit"),
type = "png",
caption = "Save mnl plot",
plot = .plot_logistic,
width = mnl_plot_width,
height = mnl_plot_height
)
observeEvent(input$mnl_report, {
r_info[["latest_screenshot"]] <- NULL
mnl_report()
})
observeEvent(input$mnl_screenshot, {
r_info[["latest_screenshot"]] <- NULL
radiant_screenshot_modal("modal_mnl_screenshot")
})
observeEvent(input$modal_mnl_screenshot, {
mnl_report()
removeModal() ## remove shiny modal after save
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.