Nothing
nn_plots <- c(
"None" = "none",
"Network" = "net",
"Permutation Importance" = "vip",
"Prediction plots" = "pred_plot",
"Partial Dependence" = "pdp",
"Olden" = "olden",
"Garson" = "garson",
"Dashboard" = "dashboard"
)
## list of function arguments
nn_args <- as.list(formals(nn))
## list of function inputs selected by user
nn_inputs <- reactive({
## loop needed because reactive values don't allow single bracket indexing
nn_args$data_filter <- if (input$show_filter) input$data_filter else ""
nn_args$arr <- if (input$show_filter) input$data_arrange else ""
nn_args$rows <- if (input$show_filter) input$data_rows else ""
nn_args$dataset <- input$dataset
for (i in r_drop(names(nn_args))) {
nn_args[[i]] <- input[[paste0("nn_", i)]]
}
nn_args
})
nn_pred_args <- as.list(if (exists("predict.nn")) {
formals(predict.nn)
} else {
formals(radiant.model:::predict.nn)
})
# list of function inputs selected by user
nn_pred_inputs <- reactive({
# loop needed because reactive values don't allow single bracket indexing
for (i in names(nn_pred_args)) {
nn_pred_args[[i]] <- input[[paste0("nn_", i)]]
}
nn_pred_args$pred_cmd <- nn_pred_args$pred_data <- ""
if (input$nn_predict == "cmd") {
nn_pred_args$pred_cmd <- gsub("\\s{2,}", " ", input$nn_pred_cmd) %>%
gsub(";\\s+", ";", .) %>%
gsub("\"", "\'", .)
} else if (input$nn_predict == "data") {
nn_pred_args$pred_data <- input$nn_pred_data
} else if (input$nn_predict == "datacmd") {
nn_pred_args$pred_cmd <- gsub("\\s{2,}", " ", input$nn_pred_cmd) %>%
gsub(";\\s+", ";", .) %>%
gsub("\"", "\'", .)
nn_pred_args$pred_data <- input$nn_pred_data
}
nn_pred_args
})
nn_plot_args <- as.list(if (exists("plot.nn")) {
formals(plot.nn)
} else {
formals(radiant.model:::plot.nn)
})
## list of function inputs selected by user
nn_plot_inputs <- reactive({
## loop needed because reactive values don't allow single bracket indexing
for (i in names(nn_plot_args)) {
nn_plot_args[[i]] <- input[[paste0("nn_", i)]]
}
nn_plot_args
})
nn_pred_plot_args <- as.list(if (exists("plot.model.predict")) {
formals(plot.model.predict)
} else {
formals(radiant.model:::plot.model.predict)
})
# list of function inputs selected by user
nn_pred_plot_inputs <- reactive({
# loop needed because reactive values don't allow single bracket indexing
for (i in names(nn_pred_plot_args)) {
nn_pred_plot_args[[i]] <- input[[paste0("nn_", i)]]
}
nn_pred_plot_args
})
output$ui_nn_rvar <- renderUI({
req(input$nn_type)
withProgress(message = "Acquiring variable information", value = 1, {
if (input$nn_type == "classification") {
vars <- two_level_vars()
} else {
isNum <- .get_class() %in% c("integer", "numeric", "ts")
vars <- varnames()[isNum]
}
})
init <- if (input$nn_type == "classification") {
if (is.empty(input$logit_rvar)) isolate(input$nn_rvar) else input$logit_rvar
} else {
if (is.empty(input$reg_rvar)) isolate(input$nn_rvar) else input$reg_rvar
}
selectInput(
inputId = "nn_rvar",
label = "Response variable:",
choices = vars,
selected = state_single("nn_rvar", vars, init),
multiple = FALSE
)
})
output$ui_nn_lev <- renderUI({
req(input$nn_type == "classification")
req(available(input$nn_rvar))
levs <- .get_data()[[input$nn_rvar]] %>%
as_factor() %>%
levels()
init <- if (is.empty(input$logit_lev)) isolate(input$nn_lev) else input$logit_lev
selectInput(
inputId = "nn_lev", label = "Choose level:",
choices = levs,
selected = state_init("nn_lev", init)
)
})
output$ui_nn_evar <- renderUI({
if (not_available(input$nn_rvar)) {
return()
}
vars <- varnames()
if (length(vars) > 0) {
vars <- vars[-which(vars == input$nn_rvar)]
}
init <- if (input$nn_type == "classification") {
# input$logit_evar
if (is.empty(input$logit_evar)) isolate(input$nn_evar) else input$logit_evar
} else {
# input$reg_evar
if (is.empty(input$reg_evar)) isolate(input$nn_evar) else input$reg_evar
}
selectInput(
inputId = "nn_evar",
label = "Explanatory variables:",
choices = vars,
selected = state_multiple("nn_evar", vars, init),
multiple = TRUE,
size = min(10, length(vars)),
selectize = FALSE
)
})
# function calls generate UI elements
output_incl("nn")
output_incl_int("nn")
output$ui_nn_wts <- renderUI({
isNum <- .get_class() %in% c("integer", "numeric", "ts")
vars <- varnames()[isNum]
if (length(vars) > 0 && any(vars %in% input$nn_evar)) {
vars <- base::setdiff(vars, input$nn_evar)
names(vars) <- varnames() %>%
{
.[match(vars, .)]
} %>%
names()
}
vars <- c("None", vars)
selectInput(
inputId = "nn_wts", label = "Weights:", choices = vars,
selected = state_single("nn_wts", vars),
multiple = FALSE
)
})
output$ui_nn_store_pred_name <- renderUI({
init <- state_init("nn_store_pred_name", "pred_nn") %>%
sub("\\d{1,}$", "", .) %>%
paste0(., ifelse(is.empty(input$nn_size), "", input$nn_size))
textInput(
"nn_store_pred_name",
"Store predictions:",
init
)
})
output$ui_nn_store_res_name <- renderUI({
req(input$dataset)
textInput("nn_store_res_name", "Store residuals:", "", placeholder = "Provide variable name")
})
## reset prediction and plot settings when the dataset changes
observeEvent(input$dataset, {
updateSelectInput(session = session, inputId = "nn_predict", selected = "none")
updateSelectInput(session = session, inputId = "nn_plots", selected = "none")
})
## reset prediction settings when the model type changes
observeEvent(input$nn_type, {
updateSelectInput(session = session, inputId = "nn_predict", selected = "none")
updateSelectInput(session = session, inputId = "nn_plots", selected = "none")
})
output$ui_nn_predict_plot <- renderUI({
predict_plot_controls("nn")
})
output$ui_nn_plots <- renderUI({
req(input$nn_type)
if (input$nn_type != "regression") {
nn_plots <- head(nn_plots, -1)
}
selectInput(
"nn_plots", "Plots:",
choices = nn_plots,
selected = state_single("nn_plots", nn_plots)
)
})
output$ui_nn_nrobs <- renderUI({
nrobs <- nrow(.get_data())
choices <- c("1,000" = 1000, "5,000" = 5000, "10,000" = 10000, "All" = -1) %>%
.[. < nrobs]
selectInput(
"nn_nrobs", "Number of data points plotted:",
choices = choices,
selected = state_single("nn_nrobs", choices, 1000)
)
})
## add a spinning refresh icon if the model needs to be (re)estimated
run_refresh(nn_args, "nn", tabs = "tabs_nn", label = "Estimate model", relabel = "Re-estimate model")
output$ui_nn <- renderUI({
req(input$dataset)
tagList(
conditionalPanel(
condition = "input.tabs_nn == 'Summary'",
wellPanel(
actionButton("nn_run", "Estimate model", width = "100%", icon = icon("play", verify_fa = FALSE), class = "btn-success")
)
),
wellPanel(
conditionalPanel(
condition = "input.tabs_nn == 'Summary'",
radioButtons(
"nn_type",
label = NULL, c("classification", "regression"),
selected = state_init("nn_type", "classification"),
inline = TRUE
),
uiOutput("ui_nn_rvar"),
uiOutput("ui_nn_lev"),
uiOutput("ui_nn_evar"),
uiOutput("ui_nn_wts"),
tags$table(
tags$td(numericInput(
"nn_size",
label = "Size:", min = 1, max = 20,
value = state_init("nn_size", 1), width = "77px"
)),
tags$td(numericInput(
"nn_decay",
label = "Decay:", min = 0, max = 1,
step = .1, value = state_init("nn_decay", .5), width = "77px"
)),
tags$td(numericInput(
"nn_seed",
label = "Seed:",
value = state_init("nn_seed", 1234), width = "77px"
)),
width = "100%"
)
),
conditionalPanel(
condition = "input.tabs_nn == 'Predict'",
selectInput(
"nn_predict",
label = "Prediction input type:", reg_predict,
selected = state_single("nn_predict", reg_predict, "none")
),
conditionalPanel(
"input.nn_predict == 'data' | input.nn_predict == 'datacmd'",
selectizeInput(
inputId = "nn_pred_data", label = "Prediction data:",
choices = c("None" = "", r_info[["datasetlist"]]),
selected = state_single("nn_pred_data", c("None" = "", r_info[["datasetlist"]])),
multiple = FALSE
)
),
conditionalPanel(
"input.nn_predict == 'cmd' | input.nn_predict == 'datacmd'",
returnTextAreaInput(
"nn_pred_cmd", "Prediction command:",
value = state_init("nn_pred_cmd", ""),
rows = 3,
placeholder = "Type a formula to set values for model variables (e.g., carat = 1; cut = 'Ideal') and press return"
)
),
conditionalPanel(
condition = "input.nn_predict != 'none'",
checkboxInput("nn_pred_plot", "Plot predictions", state_init("nn_pred_plot", FALSE)),
conditionalPanel(
"input.nn_pred_plot == true",
uiOutput("ui_nn_predict_plot")
)
),
## only show if full data is used for prediction
conditionalPanel(
"input.nn_predict == 'data' | input.nn_predict == 'datacmd'",
tags$table(
tags$td(uiOutput("ui_nn_store_pred_name")),
tags$td(actionButton("nn_store_pred", "Store", icon = icon("plus", verify_fa = FALSE)), class = "top")
)
)
),
conditionalPanel(
condition = "input.tabs_nn == 'Plot'",
uiOutput("ui_nn_plots"),
conditionalPanel(
condition = "input.nn_plots == 'pdp' | input.nn_plots == 'pred_plot'",
uiOutput("ui_nn_incl"),
uiOutput("ui_nn_incl_int")
),
conditionalPanel(
condition = "input.nn_plots == 'dashboard'",
uiOutput("ui_nn_nrobs")
)
),
conditionalPanel(
condition = "input.tabs_nn == 'Summary'",
tags$table(
tags$td(uiOutput("ui_nn_store_res_name")),
tags$td(actionButton("nn_store_res", "Store", icon = icon("plus", verify_fa = FALSE)), class = "top")
)
)
),
help_and_report(
modal_title = "Neural Network",
fun_name = "nn",
help_file = inclMD(file.path(getOption("radiant.path.model"), "app/tools/help/nn.md"))
)
)
})
nn_plot <- reactive({
if (nn_available() != "available") {
return()
}
if (is.empty(input$nn_plots, "none")) {
return()
}
res <- .nn()
if (is.character(res)) {
return()
}
plot_width <- 650
if ("dashboard" %in% input$nn_plots) {
plot_height <- 750
} else if (input$nn_plots %in% c("pdp", "pred_plot")) {
nr_vars <- length(input$nn_incl) + length(input$nn_incl_int)
plot_height <- max(250, ceiling(nr_vars / 2) * 250)
if (length(input$nn_incl_int) > 0) {
plot_width <- plot_width + min(2, length(input$nn_incl_int)) * 90
}
} else {
mlt <- if ("net" %in% input$nn_plots) 45 else 30
plot_height <- max(500, length(res$model$coefnames) * mlt)
}
list(plot_width = plot_width, plot_height = plot_height)
})
nn_plot_width <- function() {
nn_plot() %>%
(function(x) if (is.list(x)) x$plot_width else 650)
}
nn_plot_height <- function() {
nn_plot() %>%
(function(x) if (is.list(x)) x$plot_height else 500)
}
nn_pred_plot_height <- function() {
if (input$nn_pred_plot) 500 else 1
}
## output is called from the main radiant ui.R
output$nn <- renderUI({
register_print_output("summary_nn", ".summary_nn")
register_print_output("predict_nn", ".predict_print_nn")
register_plot_output(
"predict_plot_nn", ".predict_plot_nn",
height_fun = "nn_pred_plot_height"
)
register_plot_output(
"plot_nn", ".plot_nn",
height_fun = "nn_plot_height",
width_fun = "nn_plot_width"
)
## three separate tabs
nn_output_panels <- tabsetPanel(
id = "tabs_nn",
tabPanel(
"Summary",
verbatimTextOutput("summary_nn")
),
tabPanel(
"Predict",
conditionalPanel(
"input.nn_pred_plot == true",
download_link("dlp_nn_pred"),
plotOutput("predict_plot_nn", width = "100%", height = "100%")
),
download_link("dl_nn_pred"), br(),
verbatimTextOutput("predict_nn")
),
tabPanel(
"Plot",
download_link("dlp_nn"),
plotOutput("plot_nn", width = "100%", height = "100%")
)
)
stat_tab_panel(
menu = "Model > Estimate",
tool = "Neural Network",
tool_ui = "ui_nn",
output_panels = nn_output_panels
)
})
nn_available <- reactive({
req(input$nn_type)
if (not_available(input$nn_rvar)) {
if (input$nn_type == "classification") {
"This analysis requires a response variable with two levels and one\nor more explanatory variables. If these variables are not available\nplease select another dataset.\n\n" %>%
suggest_data("titanic")
} else {
"This analysis requires a response variable of type integer\nor numeric and one or more explanatory variables.\nIf these variables are not available please select another dataset.\n\n" %>%
suggest_data("diamonds")
}
} else if (not_available(input$nn_evar)) {
if (input$nn_type == "classification") {
"Please select one or more explanatory variables.\n\n" %>%
suggest_data("titanic")
} else {
"Please select one or more explanatory variables.\n\n" %>%
suggest_data("diamonds")
}
} else {
"available"
}
})
.nn <- eventReactive(input$nn_run, {
nni <- nn_inputs()
nni$envir <- r_data
withProgress(
message = "Estimating model", value = 1,
do.call(nn, nni)
)
})
.summary_nn <- reactive({
if (not_pressed(input$nn_run)) {
return("** Press the Estimate button to estimate the model **")
}
if (nn_available() != "available") {
return(nn_available())
}
summary(.nn())
})
.predict_nn <- reactive({
if (not_pressed(input$nn_run)) {
return("** Press the Estimate button to estimate the model **")
}
if (nn_available() != "available") {
return(nn_available())
}
if (is.empty(input$nn_predict, "none")) {
return("** Select prediction input **")
}
if ((input$nn_predict == "data" || input$nn_predict == "datacmd") && is.empty(input$nn_pred_data)) {
return("** Select data for prediction **")
}
if (input$nn_predict == "cmd" && is.empty(input$nn_pred_cmd)) {
return("** Enter prediction commands **")
}
withProgress(message = "Generating predictions", value = 1, {
nni <- nn_pred_inputs()
nni$object <- .nn()
nni$envir <- r_data
do.call(predict, nni)
})
})
.predict_print_nn <- reactive({
.predict_nn() %>%
{
if (is.character(.)) cat(., "\n") else print(.)
}
})
.predict_plot_nn <- reactive({
req(
pressed(input$nn_run), input$nn_pred_plot,
available(input$nn_xvar),
!is.empty(input$nn_predict, "none")
)
# if (not_pressed(input$nn_run)) return(invisible())
# if (nn_available() != "available") return(nn_available())
# req(input$nn_pred_plot, available(input$nn_xvar))
# if (is.empty(input$nn_predict, "none")) return(invisible())
# if ((input$nn_predict == "data" || input$nn_predict == "datacmd") && is.empty(input$nn_pred_data)) {
# return(invisible())
# }
# if (input$nn_predict == "cmd" && is.empty(input$nn_pred_cmd)) {
# return(invisible())
# }
withProgress(message = "Generating prediction plot", value = 1, {
do.call(plot, c(list(x = .predict_nn()), nn_pred_plot_inputs()))
})
})
.plot_nn <- reactive({
if (not_pressed(input$nn_run)) {
return("** Press the Estimate button to estimate the model **")
} else if (nn_available() != "available") {
return(nn_available())
}
req(input$nn_size)
if (is.empty(input$nn_plots, "none")) {
return("Please select a neural network plot from the drop-down menu")
}
pinp <- nn_plot_inputs()
pinp$shiny <- TRUE
pinp$size <- NULL
if (input$nn_plots == "dashboard") {
req(input$nn_nrobs)
}
if (input$nn_plots == "net") {
.nn() %>%
(function(x) if (is.character(x)) invisible() else capture_plot(do.call(plot, c(list(x = x), pinp))))
} else {
withProgress(message = "Generating plots", value = 1, {
do.call(plot, c(list(x = .nn()), pinp))
})
}
})
observeEvent(input$nn_store_res, {
req(pressed(input$nn_run))
robj <- .nn()
if (!is.list(robj)) {
return()
}
fixed <- fix_names(input$nn_store_res_name)
updateTextInput(session, "nn_store_res_name", value = fixed)
withProgress(
message = "Storing residuals", value = 1,
r_data[[input$dataset]] <- store(r_data[[input$dataset]], robj, name = fixed)
)
})
observeEvent(input$nn_store_pred, {
req(!is.empty(input$nn_pred_data), pressed(input$nn_run))
pred <- .predict_nn()
if (is.null(pred)) {
return()
}
fixed <- fix_names(input$nn_store_pred_name)
updateTextInput(session, "nn_store_pred_name", value = fixed)
withProgress(
message = "Storing predictions", value = 1,
r_data[[input$nn_pred_data]] <- store(
r_data[[input$nn_pred_data]], pred,
name = fixed
)
)
})
nn_report <- function() {
if (is.empty(input$nn_evar)) {
return(invisible())
}
outputs <- c("summary")
inp_out <- list(list(prn = TRUE), "")
figs <- FALSE
if (!is.empty(input$nn_plots, "none")) {
inp <- check_plot_inputs(nn_plot_inputs())
inp$size <- NULL
inp_out[[2]] <- clean_args(inp, nn_plot_args[-1])
inp_out[[2]]$custom <- FALSE
outputs <- c(outputs, "plot")
figs <- TRUE
}
if (!is.empty(input$nn_store_res_name)) {
fixed <- fix_names(input$nn_store_res_name)
updateTextInput(session, "nn_store_res_name", value = fixed)
xcmd <- paste0(input$dataset, " <- store(", input$dataset, ", result, name = \"", fixed, "\")\n")
} else {
xcmd <- ""
}
if (!is.empty(input$nn_predict, "none") &&
(!is.empty(input$nn_pred_data) || !is.empty(input$nn_pred_cmd))) {
pred_args <- clean_args(nn_pred_inputs(), nn_pred_args[-1])
if (!is.empty(pred_args$pred_cmd)) {
pred_args$pred_cmd <- strsplit(pred_args$pred_cmd, ";\\s*")[[1]]
} else {
pred_args$pred_cmd <- NULL
}
if (!is.empty(pred_args$pred_data)) {
pred_args$pred_data <- as.symbol(pred_args$pred_data)
} else {
pred_args$pred_data <- NULL
}
inp_out[[2 + figs]] <- pred_args
outputs <- c(outputs, "pred <- predict")
xcmd <- paste0(xcmd, "print(pred, n = 10)")
if (input$nn_predict %in% c("data", "datacmd")) {
fixed <- fix_names(input$nn_store_pred_name)
updateTextInput(session, "nn_store_pred_name", value = fixed)
xcmd <- paste0(
xcmd, "\n", input$nn_pred_data, " <- store(",
input$nn_pred_data, ", pred, name = \"", fixed, "\")"
)
}
if (input$nn_pred_plot && !is.empty(input$nn_xvar)) {
inp_out[[3 + figs]] <- clean_args(nn_pred_plot_inputs(), nn_pred_plot_args[-1])
inp_out[[3 + figs]]$result <- "pred"
outputs <- c(outputs, "plot")
figs <- TRUE
}
}
nn_inp <- nn_inputs()
if (input$nn_type == "regression") {
nn_inp$lev <- NULL
}
update_report(
inp_main = clean_args(nn_inp, nn_args),
fun_name = "nn",
inp_out = inp_out,
outputs = outputs,
figs = figs,
fig.width = nn_plot_width(),
fig.height = nn_plot_height(),
xcmd = xcmd
)
}
dl_nn_pred <- function(path) {
if (pressed(input$nn_run)) {
write.csv(.predict_nn(), file = path, row.names = FALSE)
} else {
cat("No output available. Press the Estimate button to generate results", file = path)
}
}
download_handler(
id = "dl_nn_pred",
fun = dl_nn_pred,
fn = function() paste0(input$dataset, "_nn_pred"),
type = "csv",
caption = "Save predictions"
)
download_handler(
id = "dlp_nn_pred",
fun = download_handler_plot,
fn = function() paste0(input$dataset, "_nn_pred"),
type = "png",
caption = "Save neural network prediction plot",
plot = .predict_plot_nn,
width = plot_width,
height = nn_pred_plot_height
)
download_handler(
id = "dlp_nn",
fun = download_handler_plot,
fn = function() paste0(input$dataset, "_nn"),
type = "png",
caption = "Save neural network plot",
plot = .plot_nn,
width = nn_plot_width,
height = nn_plot_height
)
observeEvent(input$nn_report, {
r_info[["latest_screenshot"]] <- NULL
nn_report()
})
observeEvent(input$nn_screenshot, {
r_info[["latest_screenshot"]] <- NULL
radiant_screenshot_modal("modal_nn_screenshot")
})
observeEvent(input$modal_nn_screenshot, {
nn_report()
removeModal() ## remove shiny modal after save
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.