Nothing
bhdr = function (data, alpha = c(0.01, 0.5), label = TRUE, shadecols,
pointcol, projmethod, ...)
{
y = t(data$y)
x = data$x
if(projmethod == "PCAproj")
{
sco = PCAproj(y, k = 2, center = median)$scores
}
if(projmethod == "rapca")
{
sco = fdpca(x, data$y)$coeff[,2:3]
rownames(sco) = 1:ncol(data$y)
}
band = Hscv.diag(sco, binned = TRUE)
if (any(diag(band) < 10^(-30))) {
stop("Computationally singular due to at least one of the diagonal elements of bandwidth matrix is very close to 0.")
}
else {
den <- kde(x = sco, H = 0.8 * band)
den <- list(x = den$eval.points[[1]], y = den$eval.points[[2]],
z = den$estimate)
hdr1 <- hdrcde::hdr.2d(sco[, 1], sco[, 2], prob = alpha, den)
plot.hdr2d(hdrcde::hdr.2d(sco[, 1], sco[, 2], prob = alpha, den),
shadecols = shadecols, pointcol = pointcol, xlab = "PC score 1",
ylab = "PC score 2", show.points = FALSE, , xaxs = "i",
yaxs = "i", ...)
points(sco[, 1], sco[, 2], pch = 16, cex = 0.5, col = 1)
points(hdr1$mode[1], hdr1$mode[2], pch = 8, col = "red")
index <- hdr1$fxy <= min(hdr1$falpha)
outliers <- which(as.vector(index))
points(sco[outliers, 1], sco[outliers, 2], col = rainbow(length(outliers)),
pch = 16)
if (label) {
year = as.numeric(rownames(y))
text(sco[outliers, 1] - 0.2, sco[outliers, 2], year[outliers],
adj = 1, col = rainbow(length(outliers)))
}
return(outliers)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.