rarefy_cols | R Documentation |
Rarefaction subset counts so that all samples have the same number of observations. Rescaling rows or cols scales the matrix values so that row sums or column sums equal 1.
rarefy_cols(mtx, depth = 0.1, n = NULL, seed = 0L, cpus = NULL)
rescale_cols(mtx)
rescale_rows(mtx)
mtx |
A matrix-like object. |
depth |
How many observations to keep per sample. When
|
n |
The number of samples to keep. When |
seed |
A positive integer to use for seeding the random number generator. If you need to create different random rarefactions of the same matrix, set this seed value to a different number each time. |
cpus |
The number of CPUs to use. Set to |
The rarefied or rescaled matrix.
Other rarefaction:
rare_corrplot()
,
rare_multiplot()
,
rare_stacked()
,
rarefy()
,
sample_sums()
Other transformations:
modify_metadata
,
rarefy()
,
slice_metadata
,
subset()
,
with()
library(rbiom)
# rarefy_cols --------------------------------------
biom <- hmp50$clone()
sample_sums(biom) %>% head(10)
biom$counts %<>% rarefy_cols(depth=1000)
sample_sums(biom) %>% head(10)
# rescaling ----------------------------------------
mtx <- matrix(sample(1:20), nrow=4)
mtx
rowSums(mtx)
rowSums(rescale_rows(mtx))
colSums(mtx)
colSums(rescale_cols(mtx))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.