Nothing
#' @title Groupwise means and confidence intervals
#'
#' @description Calculates means and confidence intervals for
#' groups.
#'
#' @param formula A formula indicating the measurement variable and
#' the grouping variables. e.g. y ~ x1 + x2.
#' @param data The data frame to use.
#' @param var The measurement variable to use. The name is in double quotes.
#' @param group The grouping variable to use. The name is in double quotes.
#' Multiple names are listed as a vector. (See example.)
#' @param trim The proportion of observations trimmed from each end of the
#' values before the mean is calculated. (As in \code{mean()})
#' @param na.rm If \code{TRUE}, \code{NA} values are removed during
#' calculations. (As in \code{mean()})
#' @param conf The confidence interval to use.
#' @param R The number of bootstrap replicates to use for bootstrapped
#' statistics.
#' @param boot If \code{TRUE}, includes the mean of the bootstrapped means.
#' This can be used as an estimate of the mean for
#' the group.
#' @param traditional If \code{TRUE}, includes the traditional confidence
#' intervals for the group means, using the t-distribution.
#' If \code{trim} is not 0,
#' the traditional confidence interval
#' will produce \code{NA}.
#' Likewise, if there are \code{NA} values that are not
#' removed, the traditional confidence interval
#' will produce \code{NA}.
#' @param normal If \code{TRUE}, includes the normal confidence
#' intervals for the group means by bootstrap.
#' See \code{\link{boot.ci}}.
#' @param basic If \code{TRUE}, includes the basic confidence
#' intervals for the group means by bootstrap.
#' See \code{\link{boot.ci}}.
#' @param percentile If \code{TRUE}, includes the percentile confidence
#' intervals for the group means by bootstrap.
#' See \code{\link{boot.ci}}.
#' @param bca If \code{TRUE}, includes the BCa confidence
#' intervals for the group means by bootstrap.
#' See \code{\link{boot.ci}}.
#' @param digits The number of significant figures to use in output.
#' @param ... Other arguments passed to the \code{boot} function.
#'
#' @details The input should include either \code{formula} and \code{data};
#' or \code{data}, \code{var}, and \code{group}. (See examples).
#'
#' Results for ungrouped (one-sample) data can be obtained by either
#' setting the right side of the formula to 1, e.g. y ~ 1, or by
#' setting \code{group=NULL} when using \code{var}.
#'
#' @note The parsing of the formula is simplistic. The first variable on the
#' left side is used as the measurement variable. The variables on the
#' right side are used for the grouping variables.
#'
#' In general, it is advisable to handle \code{NA} values before
#' using this function.
#' With some options, the function may not handle missing values well,
#' or in the manner desired by the user.
#' In particular, if \code{bca=TRUE} and there are \code{NA} values,
#' the function may fail.
#'
#' For a traditional method to calculate confidence intervals
#' on trimmed means,
#' see Rand Wilcox, Introduction to Robust Estimation and
#' Hypothesis Testing.
#'
#' @author Salvatore Mangiafico, \email{mangiafico@njaes.rutgers.edu}
#'
#' @references \url{https://rcompanion.org/handbook/C_03.html}
#'
#' @seealso \code{\link{groupwiseMedian}},
#' \code{\link{groupwiseHuber}},
#' \code{\link{groupwiseGeometric}}
#'
#' @concept summary statistics
#' @concept mean
#' @concept confidence interval
#'
#' @return A data frame of requested statistics by group.
#'
#' @examples
#' ### Example with formula notation
#' data(Catbus)
#' groupwiseMean(Steps ~ Teacher + Gender,
#' data = Catbus,
#' traditional = FALSE,
#' percentile = TRUE)
#'
#' ### Example with variable notation
#' data(Catbus)
#' groupwiseMean(data = Catbus,
#' var = "Steps",
#' group = c("Teacher", "Gender"),
#' traditional = FALSE,
#' percentile = TRUE)
#'
#' @importFrom boot boot boot.ci
#' @importFrom plyr ddply rename
#'
#' @export
groupwiseMean =
function(formula=NULL, data=NULL, var=NULL, group=NULL,
trim=0, na.rm=FALSE,
conf=0.95, R=5000,
boot=FALSE, traditional=TRUE,
normal=FALSE, basic=FALSE,
percentile=FALSE, bca=FALSE,
digits=3, ...)
{
if(!is.null(formula)){
var = all.vars(formula[[2]])[1]
group = all.vars(formula[[3]])
}
####################
### Define DF
if(na.rm){DF=
ddply(.data=data,
.variables=group, var,
.fun=function(x, idx){
sum(!is.na(x[,idx]))})}
if(!na.rm){DF=
ddply(.data=data,
.variables=group, var,
.fun=function(x, idx){
length(x[,idx])})}
####################
fun1 = function(x, idx){as.numeric(mean(x[,idx], trim=trim, na.rm=na.rm))}
D1=
ddply(.data=data,
.variables=group, var,
.fun=fun1)
####################
if(boot==TRUE){
fun2 = function(x, idx){mean(boot(x[,idx],
function(y,j) mean(y[j], trim=trim, na.rm=na.rm),
R=R, ...)$t[,1])}
D2=ddply(.data=data,
.variables=group, var,
.fun=fun2)
}
####################
if(basic==TRUE){
fun4 = function(x, idx){boot.ci(boot(x[,idx],
function(y,j) mean(y[j], trim=trim, na.rm=na.rm),
R=R, ...), conf=conf,
type="basic", ...)$basic[4]}
fun5 = function(x, idx){boot.ci(boot(x[,idx],
function(y,j) mean(y[j], trim=trim),
R=R, ...), conf=conf,
type="basic", ...)$basic[5]}
D4=ddply(.data=data,
.variables=group, var,
.fun=fun4)
D5=ddply(.data=data,
.variables=group, var,
.fun=fun5)
}
####################
if(normal==TRUE){
fun6 = function(x, idx){boot.ci(boot(x[,idx],
function(y,j) mean(y[j],
trim=trim, na.rm=na.rm),
R=R, ...), conf=conf,
type="norm", ...)$normal[2]}
fun7 = function(x, idx){boot.ci(boot(x[,idx],
function(y,j) mean(y[j],
trim=trim, na.rm=na.rm),
R=R, ...), conf=conf,
type="norm", ...)$normal[3]}
D6=ddply(.data=data,
.variables=group, var,
.fun=fun6)
D7=ddply(.data=data,
.variables=group, var,
.fun=fun7)
}
####################
if(percentile==TRUE){
fun8 = function(x, idx){boot.ci(boot(x[,idx],
function(y,j) mean(y[j],
trim=trim, na.rm=na.rm),
R=R, ...), conf=conf,
type="perc", ...)$percent[4]}
fun9 = function(x, idx){boot.ci(boot(x[,idx],
function(y,j) mean(y[j],
trim=trim, na.rm=na.rm),
R=R, ...), conf=conf,
type="perc", ...)$percent[5]}
D8=ddply(.data=data,
.variables=group, var,
.fun=fun8)
D9=ddply(.data=data,
.variables=group, var,
.fun=fun9)
}
####################
if(bca==TRUE){
fun10 = function(x, idx){boot.ci(boot(x[,idx],
function(y,j) mean(y[j],
trim=trim, na.rm=na.rm),
R=R, ...), conf=conf,
type="bca", ...)$bca[4]}
fun11 = function(x, idx){boot.ci(boot(x[,idx],
function(y,j) mean(y[j],
trim=trim, na.rm=na.rm),
R=R, ...), conf=conf,
type="bca", ...)$bca[5]}
D10=ddply(.data=data,
.variables=group, var,
.fun=fun10)
D11=ddply(.data=data,
.variables=group, var,
.fun=fun11)
}
####################
if(traditional==TRUE){
Confy = function (x, ...){
S = sd(x, na.rm=na.rm)
if(na.rm){N = length(x[!is.na(x)])}
if(!na.rm){N = length(x)}
Dist = conf + (1 - conf)/2
Inty = qt(Dist, df = (N - 1)) * S/sqrt(N)
if(trim==0){return(Inty)}
if(trim != 0){return(NA)}
}
fun12 = function(x, idx){mean(x[,idx], na.rm=na.rm)-Confy(x[,idx])}
fun13 = function(x, idx){mean(x[,idx], na.rm=na.rm)+Confy(x[,idx])}
D12=ddply(.data=data,
.variables=group, var,
.fun=fun12)
D13=ddply(.data=data,
.variables=group, var,
.fun=fun13)
}
####################
DF = rename(DF,c('V1'='n'))
DF$Mean = signif(D1$V1, digits=digits)
if(boot==TRUE){DF$Boot.mean = signif(D2$V1, digits=digits)}
if(basic|normal|percentile|bca|traditional){DF$Conf.level = conf}
if(traditional==TRUE){DF$Trad.lower= signif(D12$V1, digits=digits)}
if(traditional==TRUE){DF$Trad.upper= signif(D13$V1, digits=digits)}
if(basic==TRUE){DF$Basic.lower = signif(D4$V1, digits=digits)}
if(basic==TRUE){DF$Basic.upper = signif(D5$V1, digits=digits)}
if(normal==TRUE){DF$Normal.lower = signif(D6$V1, digits=digits)}
if(normal==TRUE){DF$Normal.upper = signif(D7$V1, digits=digits)}
if(percentile==TRUE){DF$Percentile.lower = signif(D8$V1, digits=digits)}
if(percentile==TRUE){DF$Percentile.upper = signif(D9$V1, digits=digits)}
if(bca==TRUE){DF$Bca.lower = signif(D10$V1, digits=digits)}
if(bca==TRUE){DF$Bca.upper = signif(D11$V1, digits=digits)}
return(DF)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.