R/pairwisePermutationTest.r

Defines functions pairwisePermutationTest

Documented in pairwisePermutationTest

#' @title Pairwise two-sample independence tests
#'
#' @description Conducts pairwise two-sample independence tests across groups.
#' 
#' @param formula A formula indicating the measurement variable and
#'                the grouping variable. e.g. y ~ group.
#' @param data   The data frame to use.
#' @param x      The response variable as a vector.
#' @param g      The grouping variable as a vector.
#' @param method The p-value adjustment method to use for multiple tests.
#'               See \code{stats::p.adjust}.
#' @param ...    Additional arguments passed to
#'               \code{coin::independence_test}.              
#'             
#' @details The input should include either \code{formula} and \code{data};
#'          or \code{x}, and \code{g}.
#'          
#'          This function is a wrapper for \code{coin::independence_test},
#'          passing pairwise groups to the function. It's critical to read
#'          and understand the documentation for this function to understand
#'          its use and options.
#'          
#'          For some options for common tests, see Horthorn et al., 2008.
#'
#' @note    The parsing of the formula is simplistic. 
#'          The first variable on the
#'          left side is used as the measurement variable.  
#'          The first variable on the
#'          right side is used for the grouping variable.
#'   
#' @author Salvatore Mangiafico, \email{mangiafico@njaes.rutgers.edu}
#' 
#' @references \url{https://rcompanion.org/handbook/K_02.html}
#' 
#'             Hothorn, T., K. Hornik, M.A. van de Wiel, and A. Zeileis. 2008. 
#'             Implementing a Class of Permutation Tests: The coin Package. 
#'             Journal of Statistical Software, 28(8), 1–23.
#' 
#' @seealso \code{\link{pairwisePermutationMatrix}}
#' 
#' @concept post-hoc 
#' @concept permutation test
#' 
#' @return A dataframe of the groups being compared, the p-values,
#'         and the adjusted p-values.
#'
#' @examples
#' ### Fisher-Pitman test
#' 
#' data(BrendonSmall)
#' 
#' library(coin)
#'                      
#' independence_test(Sodium ~ Instructor, data = BrendonSmall, 
#'                  teststat="quadratic")
#'                                        
#' PT = pairwisePermutationTest(Sodium ~ Instructor,
#'                              data   = BrendonSmall,
#'                              teststat="quadratic",
#'                              method = "fdr")
#' PT
#' 
#' cldList(comparison = PT$Comparison,
#'         p.value    = PT$p.adjust,
#'         threshold  = 0.05)
#' 
#' @importFrom stats p.adjust
#' @importFrom coin independence_test statistic
#' 
#' @export

pairwisePermutationTest = 
  function(formula=NULL, data=NULL, 
           x=NULL, g=NULL, 
           method = "fdr", ...)
  {
  if(!is.null(formula)){
    x  = eval(parse(text=paste0("data","$",all.vars(formula[[2]])[1])))
    g  = eval(parse(text=paste0("data","$",all.vars(formula[[3]])[1])))
    }
  if(!is.factor(g)){g=factor(g)}
  n = length(levels(g))
  N = n*(n-1)/2
  d = data.frame(x = x, g = g)
  Z = data.frame(Comparison=rep("A", N),
                 Stat=rep(NA, N),
                 p.value=rep(NA, N),
                 p.adjust=rep(NA, N),
                 stringsAsFactors=FALSE)
                 
  k=0               
  for(i in 1:(n-1)){
     for(j in (i+1):n){
       k=k+1
     Namea = as.character(levels(g)[i])
     Nameb = as.character(levels(g)[j])
     Datax = subset(d, g==levels(g)[i])
     Datay = subset(d, g==levels(g)[j])
     Dataz = rbind(Datax, Datay)
     Dataz$g2 = factor(Dataz$g)
     z = independence_test(x ~ g2, data=Dataz, ...)
     P = signif(pvalue(z), digits=4)
     S = signif(statistic (z), digits=4)
     P.adjust = NA                       
     Z[k,] =c( paste0(Namea, " - ", Nameb, " = 0"), 
             S, P, P.adjust)
     }
    } 
  Z$p.adjust = signif(p.adjust(Z$p.value, method = method), digits=4) 
  return(Z)
  }

Try the rcompanion package in your browser

Any scripts or data that you put into this service are public.

rcompanion documentation built on May 29, 2024, 8:42 a.m.