R/separate_series.R

Defines functions separate_series

Documented in separate_series

#' Separate the series column in a tidy ABS time series data frame
#'
#' Separate the 'series' column in a data frame (tibble)
#' downloaded using \code{read_abs()} into multiple columns using the ";"
#' separator.
#'
#' @param data A data frame (tibble) containing tidied data from the ABS time
#' series table(s).
#' @param column_names (optional) character vector. Supply a vector of column
#' names, such as \code{c("group_name", "variable","gender")}. If not
#' supplied, columns will be named "series_1" etc.
#' @param remove_totals logical. FALSE by default.
#' If set to TRUE, any series rows that contain the word "total"
#' will be removed.
#' @param remove_nas locical. FALSE by default. If set to TRUE, any rows
#' containining an NA in at least one of the separated series columns
#' will be removed.
#'
#' @return A data frame (tibble) containing the tidied data from the ABS time
#' series table(s).
#'
#' @export
#'
#' @examples
#' \dontrun{
#' wpi <- read_abs("6345.0", 1) %>%
#'   separate_series()
#' }
#'
#' @importFrom stringi stri_trim_both
#' @importFrom dplyr filter mutate_at sym
#' @importFrom tidyr separate
#' @importFrom purrr map_dfr

separate_series <- function(data,
                            column_names = NULL,
                            remove_totals = FALSE,
                            remove_nas = FALSE) {

  # satisfy R CMD check's "no visible binding" error
  series <- NULL
  original_series <- NULL

  # Create copy of series column to restore later
  data <- mutate(data,
    original_series = series
  )

  # Minor data cleaning of series column
  data <- mutate(data,
    # Extract everything before trailing ;
    series = regmatches(
      series,
      regexpr(".+(?= ;)", series, perl = TRUE)
    ),
    series = gsub(
      pattern = ">", series,
      replacement = "", perl = TRUE
    ),
    series = fast_str_squish(series)
  )

  # Filter totals if specified
  if (remove_totals) {
    data <- filter(
      data,
      !grepl("total", series, ignore.case = T, perl = TRUE)
    )
  }

  # Determine number of ; separators in series column
  n_seps <- max(stringi::stri_count_fixed(data$series, ";"))

  # Determine number of columns to split series into
  n_columns <- n_seps + 1

  # Create new column names if not specified
  if (is.null(column_names)) {
    column_names <- paste("series", 1:n_columns, sep = "_")
  }

  # Separate columns
  data_separated <- separate(data, series,
    into = column_names,
    sep = ";",
    remove = FALSE,
    fill = "left"
  ) %>%
    mutate_at(.vars = vars(column_names), fast_str_squish)


  # check for columns with NAs
  na_columns <- colnames(data_separated)[colSums(is.na(data_separated)) > 0]

  if (length(na_columns) > 0 & !remove_nas) {
    warning(paste0(na_columns, collapse = ", "),
      " column(s) have NA values.",
      call. = TRUE
    )
  }

  # filter NAs in new series columns

  if (remove_nas & length(na_columns) > 0) {
    remove_na_fn <- function(df, column) {
      col_sym <- dplyr::sym(column)

      df %>%
        filter(!is.na(!!col_sym))
    }

    data_separated <- purrr::map_dfr(
      .x = na_columns,
      .f = remove_na_fn,
      df = data_separated
    )

    message("Rows with NAs in separated series column(s) have been removed.")
  }


  # Replace original series column
  data_separated <- mutate(data_separated,
    series = original_series
  )

  data_separated <- select(
    data_separated,
    -original_series
  )

  return(data_separated)
}

Try the readabs package in your browser

Any scripts or data that you put into this service are public.

readabs documentation built on Oct. 28, 2021, 9:08 a.m.