R/melt_delim.R

Defines functions melt_delimited melt_tokens melt_tsv melt_csv2 melt_csv melt_delim

Documented in melt_csv melt_csv2 melt_delim melt_tsv

#' Return melted data for each token in a delimited file (including csv & tsv)
#'
#' For certain non-rectangular data formats, it can be useful to parse the data
#' into a melted format where each row represents a single token.
#'
#' `melt_csv()` and `melt_tsv()` are special cases of the general
#' `melt_delim()`. They're useful for reading the most common types of
#' flat file data, comma separated values and tab separated values,
#' respectively. `melt_csv2()` uses `;` for the field separator and `,` for the
#' decimal point. This is common in some European countries.
#' @inheritParams read_delim
#' @return A [tibble()] of four columns:
#'   * `row`, the row that the token comes from in the original file
#'   * `col`, the column that the token comes from in the original file
#'   * `data_type`, the data type of the token, e.g. `"integer"`, `"character"`,
#'     `"date"`, guessed in a similar way to the `guess_parser()` function.
#'   * `value`, the token itself as a character string, unchanged from its
#'     representation in the original file.
#'
#'   If there are parsing problems, a warning tells you
#'   how many, and you can retrieve the details with [problems()].
#' @seealso [read_delim()] for the conventional way to read rectangular data
#' from delimited files.
#' @export
#' @examples
#' # Input sources -------------------------------------------------------------
#' # Read from a path
#' melt_csv(readr_example("mtcars.csv"))
#' melt_csv(readr_example("mtcars.csv.zip"))
#' melt_csv(readr_example("mtcars.csv.bz2"))
#' \dontrun{
#' melt_csv("https://github.com/tidyverse/readr/raw/master/inst/extdata/mtcars.csv")
#' }
#'
#' # Or directly from a string (must contain a newline)
#' melt_csv("x,y\n1,2\n3,4")
#'
#' # To import empty cells as 'empty' rather than `NA`
#' melt_csv("x,y\n,NA,\"\",''", na = "NA")
#'
#' # File types ----------------------------------------------------------------
#' melt_csv("a,b\n1.0,2.0")
#' melt_csv2("a;b\n1,0;2,0")
#' melt_tsv("a\tb\n1.0\t2.0")
#' melt_delim("a|b\n1.0|2.0", delim = "|")
#' @export
melt_delim <- function(file, delim, quote = '"',
                       escape_backslash = FALSE, escape_double = TRUE,
                       locale = default_locale(),
                       na = c("", "NA"), quoted_na = TRUE,
                       comment = "", trim_ws = FALSE,
                       skip = 0, n_max = Inf,
                       progress = show_progress(),
                       skip_empty_rows = FALSE) {
  if (!nzchar(delim)) {
    stop("`delim` must be at least one character, ",
      "use `melt_table()` for whitespace delimited input.", call. = FALSE)
  }
  tokenizer <- tokenizer_delim(delim, quote = quote,
    escape_backslash = escape_backslash, escape_double = escape_double,
    na = na, quoted_na = quoted_na, comment = comment, trim_ws = trim_ws,
    skip_empty_rows = skip_empty_rows)
  melt_delimited(file, tokenizer, locale = locale, skip = skip,
    skip_empty_rows = skip_empty_rows, comment = comment,
    n_max = n_max, progress = progress)
}

#' @rdname melt_delim
#' @export
melt_csv <- function(file, locale = default_locale(), na = c("", "NA"),
                     quoted_na = TRUE, quote = "\"", comment = "",
                     trim_ws = TRUE, skip = 0, n_max = Inf,
                     progress = show_progress(),
                     skip_empty_rows = FALSE) {
  tokenizer <- tokenizer_csv(na = na, quoted_na = quoted_na, quote = quote,
    comment = comment, trim_ws = trim_ws, skip_empty_rows = skip_empty_rows)
  melt_delimited(file, tokenizer, locale = locale, skip = skip,
    skip_empty_rows = skip_empty_rows, comment = comment, n_max = n_max,
    progress = progress)
}

#' @rdname melt_delim
#' @export
melt_csv2 <- function(file, locale = default_locale(), na = c("", "NA"),
                      quoted_na = TRUE, quote = "\"", comment = "",
                      trim_ws = TRUE, skip = 0, n_max = Inf,
                      progress = show_progress(),
                      skip_empty_rows = FALSE) {

  if (locale$decimal_mark == ".") {
    message("Using ',' as decimal and '.' as grouping mark. Use melt_delim() for more control.")
    locale$decimal_mark <- ","
    locale$grouping_mark <- "."
  }
  tokenizer <- tokenizer_delim(delim = ";", na = na, quoted_na = quoted_na,
    quote = quote, comment = comment, trim_ws = trim_ws,
    skip_empty_rows = skip_empty_rows)
  melt_delimited(file, tokenizer, locale = locale, skip = skip,
    skip_empty_rows = skip_empty_rows, comment = comment, n_max = n_max,
    progress = progress)
}


#' @rdname melt_delim
#' @export
melt_tsv <- function(file, locale = default_locale(), na = c("", "NA"),
                     quoted_na = TRUE, quote = "\"", comment = "",
                     trim_ws = TRUE, skip = 0, n_max = Inf,
                     progress = show_progress(),
                     skip_empty_rows = FALSE) {
  tokenizer <- tokenizer_tsv(na = na, quoted_na = quoted_na, quote = quote,
    comment = comment, trim_ws = trim_ws, skip_empty_rows = skip_empty_rows)
  melt_delimited(file, tokenizer, locale = locale, skip = skip,
    skip_empty_rows = skip_empty_rows, comment = comment, n_max = n_max,
    progress = progress)
}

# Helper functions for reading from delimited files ----------------------------
col_spec_melt <-
  structure(list(row = structure(list(),
                                 class = c("collector_double",
                                           "collector")),
                 col = structure(list(),
                                 class = c("collector_double",
                                           "collector")),
                 data_type = structure(list(),
                                       class = c("collector_character",
                                                 "collector")),
                 value = structure(list(),
                                   class = c("collector_character",
                                             "collector"))),
            .Names = c("row", "col", "data_type", "value"))

melt_tokens <- function(data, tokenizer, locale_, n_max, progress) {
  if (n_max == Inf) {
    n_max <- -1
  }
  melt_tokens_(data, tokenizer, col_spec_melt, locale_, n_max, progress)
}

melt_delimited <- function(file, tokenizer, locale = default_locale(),
                           skip = 0, skip_empty_rows = FALSE, comment = "", n_max = Inf,
                           progress = show_progress()) {
  name <- source_name(file)
  # If connection needed, read once.
  file <- standardise_path(file)
  if (is.connection(file)) {
    data <- datasource_connection(file, skip, skip_empty_rows = skip_empty_rows, comment)
  } else {
    if (empty_file(file)) {
       return(tibble::data_frame(row = double(), col = double(),
                                 data_type = character(), value = character()))
    }
    if (is.character(file) && identical(locale$encoding, "UTF-8")) {
      # When locale is not set, file is probablly marked as its correct encoding.
      # As default_locale() assumes file is UTF-8, file should be encoded as UTF-8 for non-UTF-8 MBCS locales.
      data <- enc2utf8(file)
    } else {
      data <- file
    }
  }
  ds <- datasource(data, skip = skip, skip_empty_rows = skip_empty_rows, comment = comment)
  out <- melt_tokens(ds, tokenizer, locale_ = locale, n_max = n_max,
              progress = progress)
  warn_problems(out)
}

Try the readr package in your browser

Any scripts or data that you put into this service are public.

readr documentation built on May 2, 2019, 6:35 a.m.