Nothing
###############################################################
###############################################################
###############################################################
#' @export
regCNN <- function(x, ...) UseMethod("regCNN")
#' Condensed Nearest Neighbors for Regression
#'
#' Application of the regCNN noise filtering method in a regression dataset.
#'
#' \emph{Condensed Nearest Neighbors} (CNN) seeks to obtain a data subset that improves the quality of the original dataset.
#' In classification problems, CNN performs a first classification and stores all the samples that are misclassified.
#' Then, those stored samples are taken as a training set. The process stops when all the unstored samples are correctly classified.
#' The implementation of this noise filter to be used in regression problems follows the proposal of Martín \emph{et al.} (2021),
#' which is based on the use of a noise threshold (\code{t}) to determine the similarity between the output variable of the samples.
#'
#' @param x a data frame of input attributes.
#' @param y a double vector with the output regressand of each sample.
#' @param t a double in [0,1] with the \emph{threshold} used by regression noise filter (default: 0.2).
#' @param formula a formula with the output regressand and, at least, one input attribute.
#' @param data a data frame in which to interpret the variables in the formula.
#' @param ... other options to pass to the function.
#'
#' @return The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors).
#' This function returns an object of class \code{rfdata}, which contains information related to the noise filtering process in the form of a list with the following elements:
#' \item{xclean}{a data frame with the input attributes of clean samples (without errors).}
#' \item{yclean}{a double vector with the output regressand of clean samples (without errors).}
#' \item{numclean}{an integer with the amount of clean samples.}
#' \item{idclean}{an integer vector with the indices of clean samples.}
#' \item{xnoise}{a data frame with the input attributes of noisy samples (with errors).}
#' \item{ynoise}{a double vector with the output regressand of noisy samples (with errors).}
#' \item{numnoise}{an integer with the amount of noisy samples.}
#' \item{idnoise}{an integer vector with the indices of noisy samples.}
#' \item{filter}{the full name of the noise filter used.}
#' \item{param}{a list of the argument values.}
#' \item{call}{the function call.}
#'
#' Note that objects of the class \code{rfdata} support \link{print.rfdata}, \link{summary.rfdata} and \link{plot.rfdata} methods.
#'
#' @references
#' L. Devroye, L. Gyorfi and G. Lugosi,
#' \strong{Condensed and edited nearest neighbor rules.}
#' \emph{In: A Probabilistic Theory of Pattern Recognition}, 31:303-313, 1996.
#' \doi{https://doi.org/10.1007/978-1-4612-0711-5_19}.
#'
#' J. Martín, J. A. Sáez and E. Corchado,
#' \strong{On the regressand noise problem: Model robustness and synergy with regression-adapted noise filters.}
#' \emph{IEEE Access}, 9:145800-145816, 2021.
#' \doi{https://doi.org/10.1109/ACCESS.2021.3123151}.
#' @examples
#' # load the dataset
#' data(rock)
#'
#' # usage of the default method
#' set.seed(9)
#' out.def <- regCNN(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])
#'
#' # show results
#' summary(out.def, showid = TRUE)
#'
#' # usage of the method for class formula
#' set.seed(9)
#' out.frm <- regCNN(formula = perm ~ ., data = rock)
#'
#' # check the match of noisy indices
#' all(out.def$idnoise == out.frm$idnoise)
#'
#' @seealso \code{\link{regRNN}}, \code{\link{regENN}}, \code{\link{regBBNR}}, \code{\link{print.rfdata}}, \code{\link{summary.rfdata}}
#' @name regCNN
NULL
###############################################################
###############################################################
###############################################################
#' @rdname regCNN
#' @export
#' @importFrom "FNN" "knn.reg"
regCNN.default <- function(x, y, t=0.2, ...){
######### check for errors #########
if(!is.data.frame(x)){
stop("argument \"x\" must be a data frame")
}
if(!is.numeric(y)){
stop("argument \"y\" must be a factor vector")
}
if(any(t < 0) || any(t > 1)){
stop("argument \"threshold\" must be in [0,1]")
}
if(nrow(x) != length(y)){
stop("number of rows of \"x\" must be equal to length of \"y\"")
}
dataset <- cbind(x, y)
output <- ncol(dataset)
original.data <- dataset
dataset <- normalizeData2(dataset)
firstDif <- which(forecast(prediccion = dataset[,output], real = dataset[1,output], t))[1]
if (firstDif == 1) {store <- 1
}else{store <- c(1, firstDif)}
grabBag <- setdiff(1:firstDif, store)
for(i in (firstDif+1):nrow(dataset)){
nn_pred <- knn.reg(train = dataset[store,-output], test = dataset[i,-output], y = dataset[store,output], k = 1, algorithm = c("brute"))$pred
areDifferent <- forecast(prediccion = nn_pred, real = dataset[i,output], t)
if(areDifferent){
grabBag <- c(grabBag,i)
}else{
store <- c(store,i)
}
}
KeepOn <- TRUE
while(KeepOn){
KeepOn <- FALSE
for(i in grabBag){
p_nn <- knn.reg(train = dataset[store,-output], test = dataset[i,-output],y = dataset[store,output],k = 1, algorithm=c("brute"))$pred
areSimilar <- forecast(prediccion = p_nn, real = dataset[i,output], t)
if(!areSimilar){
store <- c(store,i)
grabBag <- setdiff(grabBag,i)
KeepOn <- TRUE
}
}
}
# ------------------------------------ #
# --- Building the 'filter' object --- #
# ------------------------------------ #
idclean <- sort(store)
numclean <- length(idclean)
xclean <- original.data[idclean,-ncol(original.data)]
yclean <- original.data[idclean,ncol(original.data)]
idnoise <- sort(grabBag)
numnoise <- length(idnoise)
xnoise <- original.data[idnoise,-ncol(original.data)]
ynoise <- original.data[idnoise,ncol(original.data)]
param <- list(t=t)
call <- match.call()
call[[1]] <- as.name("regCNN")
ret <- list(xclean = xclean,
yclean = yclean,
numclean = numclean,
idclean = idclean,
xnoise = xnoise,
ynoise = ynoise,
numnoise = numnoise,
idnoise = idnoise,
filter = "Condensed Nearest Neighbors",
param = param,
call = call)
class(ret) <- "rfdata"
return(ret)
}
###############################################################
###############################################################
###############################################################
#' @export
#' @rdname regCNN
#' @importFrom "stats" "model.frame"
regCNN.formula <- function(formula, data, ...){
if(!is.data.frame(data)){
stop("argument \"data\" must be a data frame")
}
mf <- model.frame(formula,data)
attr(mf,"terms") <- NULL
x <- mf[,-1]
y <- mf[,1]
res <- regCNN.default(x = x, y = y, ...)
res$call <- match.call(expand.dots = TRUE)
res$call[[1]] <- as.name("regCNN")
return(res)
}
###############################################################
###############################################################
###############################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.