Nothing
normalizeData2 <- function(data){
features <- apply(data, MARGIN = 2,
FUN = function(x){
resx <- (x - min(x)) / (max(x) - min(x))
return(resx)
})
data_aux <- as.data.frame(features)
return(data_aux)
}
forecast <- function(prediccion, real, NS){
forest <- logical(length(prediccion))
dif <- abs(prediccion-real)
idx_NS <- which(dif > NS)
# if are different: True
forest[idx_NS] <- T
return(forest)
}
sort_DROP2RT <- function(data, D = 0.1) {
Y <- data[,ncol(data)]
num_instances <- length(Y)
distances <- matrix(0, nrow = num_instances, ncol = num_instances)
# Calculate distances between instances
for (i in 1:num_instances) {
for (j in 1:num_instances) {
# print(i , j)
distances[i, j] <- abs(Y[i] - Y[j])
}
}
# Find the closest enemies for each instance based on the specified condition
closest_enemies <- vector("numeric", length = num_instances)
for (i in 1:num_instances) {
closest_enemy_distance <- Inf
for (j in 1:num_instances) {
if (i != j && abs(Y[i] - Y[j]) > D && distances[i, j] < closest_enemy_distance) {
closest_enemy_distance <- distances[i, j]
closest_enemies[i] <- j
}
}
}
# Sort instances based on the distance to their closest enemy
sorted_indices <- order(closest_enemies)
sorted_data <- data[sorted_indices, ]
rownames(sorted_data) <- 1:nrow(sorted_data)
return(sorted_data)
}
normalKFCV <- function(data_, k_){
part_aux <- crossv_kfold(data = data_, k = k_)
part <- list(train = list(NULL), test = list(NULL))
for(i in 1:k_){
part$test[[i]] <- part_aux$test[[i]]$idx
part$train[[i]] <- part_aux$train[[i]]$idx
if(length(part$test[[i]])+length(part$train[[i]]) != nrow(data_)){
message("===============> ERROR!!")
stop("===============> Error in SCV - Normal")
return(NULL)
}
}
return(part)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.