predict: EOT based spatial prediction

Description Usage Arguments Value Methods (by class) Examples

Description

Make spatial predictions using the fitted model returned by eot. A (user-defined) set of n modes will be used to model the outcome using the identified link functions of the respective modes which are added together to produce the final prediction.

Usage

1
2
3
4
5
## S4 method for signature 'EotStack'
predict(object, newdata, n = 1, ...)

## S4 method for signature 'EotMode'
predict(object, newdata, n = 1, ...)

Arguments

object

an Eot* object

newdata

the data to be used as predictor

n

the number of modes to be used for the prediction. See nXplain for calculating the number of modes based on their explnatory power.

...

further arguments to be passed to calc

Value

a RasterStack of nlayers(newdata)

Methods (by class)

  • EotMode: EotMode

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
### not very useful, but highlights the workflow
data(pacificSST)
data(australiaGPCP)

## train data using eot()
train <- eot(x = pacificSST[[1:10]], 
             y = australiaGPCP[[1:10]], 
             n = 1)

## predict using identified model
pred <- predict(train, 
                newdata = pacificSST[[11:20]], 
                n = 1)

## compare results
opar <- par(mfrow = c(1,2))
plot(australiaGPCP[[13]], main = "original", zlim = c(0, 10))
plot(pred[[3]], main = "predicted", zlim = c(0, 10))
par(opar)

remote documentation built on May 19, 2017, 12:37 p.m.

Search within the remote package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.